Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from gradio_image_prompter import ImagePrompter
|
6 |
+
from transformers import AutoProcessor, UdopForConditionalGeneration
|
7 |
+
import easyocr
|
8 |
+
from PIL import Image
|
9 |
+
import spaces
|
10 |
+
|
11 |
+
processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False)
|
12 |
+
model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large")
|
13 |
+
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
@spaces.GPU
|
17 |
+
def udop_box_inference(image, text_prompt, box_coordinates):
|
18 |
+
box_coordinates = [box_coordinates[0], box_coordinates[1], box_coordinates[3], box_coordinates[4]]
|
19 |
+
|
20 |
+
extracted_image = extract_box(image_path, box_coordinates)
|
21 |
+
extracted_image.save("cropped_image.png")
|
22 |
+
|
23 |
+
reader = easyocr.Reader(['en'])
|
24 |
+
result = reader.readtext('cropped_image.png')
|
25 |
+
texts = []
|
26 |
+
bboxs = []
|
27 |
+
for (bbox, text, prob) in result:
|
28 |
+
texts.append(text)
|
29 |
+
bboxs.append([bbox[0][0], bbox[0][1], bbox[2][0], bbox[2][1]])
|
30 |
+
|
31 |
+
height = image.size[1]
|
32 |
+
width = image.size[0]
|
33 |
+
image = image.convert("RGB")
|
34 |
+
norm_boxes = []
|
35 |
+
for box in bboxs:
|
36 |
+
norm_boxes.append(normalize_bbox(box, width, height))
|
37 |
+
|
38 |
+
encoding = processor(image, text_prompt, texts, boxes=norm_boxes, return_tensors="pt")
|
39 |
+
predicted_ids = model.generate(**encoding)
|
40 |
+
return processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
41 |
+
|
42 |
+
|
43 |
+
def normalize_bbox(bbox, width, height):
|
44 |
+
return [
|
45 |
+
int(1000 * (bbox[0] / width)),
|
46 |
+
int(1000 * (bbox[1] / height)),
|
47 |
+
int(1000 * (bbox[2] / width)),
|
48 |
+
int(1000 * (bbox[3] / height)),
|
49 |
+
]
|
50 |
+
|
51 |
+
|
52 |
+
def extract_box(image_path, coordinates):
|
53 |
+
image = Image.open(image_path)
|
54 |
+
x, y, x2, y2 = coordinates
|
55 |
+
cropped_image = image.crop((x, y, x2, y2))
|
56 |
+
return cropped_image
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def infer_box(prompts, text_prompts):
|
61 |
+
# background (original image) layers[0] ( point prompt) composite (total image)
|
62 |
+
image = prompts["image"]
|
63 |
+
if image is None:
|
64 |
+
gr.Error("Please upload an image and draw a box before submitting")
|
65 |
+
points = prompts["points"][0]
|
66 |
+
if points is None:
|
67 |
+
gr.Error("Please draw a box before submitting.")
|
68 |
+
return udop_box_inference(image, text_prompts, points)
|
69 |
+
|
70 |
+
|
71 |
+
with gr.Blocks(title="UDOP") as demo:
|
72 |
+
gr.Markdown("# UDOP")
|
73 |
+
gr.Markdown("UDOP is a cutting-edge foundation model for a document understanding and generation.")
|
74 |
+
gr.Markdown("Try UDOP in this demo.")
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column(scale=1):
|
78 |
+
# Title
|
79 |
+
gr.Markdown("To try box prompting, simply upload and image and draw a box on it.")
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column():
|
82 |
+
im = ImagePrompter(type="pil")
|
83 |
+
text_prompt = gr.Textbox()
|
84 |
+
btn = gr.Button("Submit")
|
85 |
+
with gr.Column():
|
86 |
+
output = gr.Textbox(label="UDOP Output")
|
87 |
+
|
88 |
+
|
89 |
+
btn.click(infer_box, inputs=[im,text_prompt], outputs=[output])
|
90 |
+
|
91 |
+
demo.launch(debug=True)
|