import gradio as gr import numpy as np import torch from PIL import Image from gradio_image_prompter import ImagePrompter from transformers import AutoProcessor, UdopForConditionalGeneration import easyocr from PIL import Image import spaces from typing import Optional, List, TypedDict, Union, Literal class PromptValue(TypedDict): image: Optional[Union[Image.Image, str]] points: Optional[List[List[float]]] processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False) model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") @spaces.GPU def udop_box_inference(image, text_prompt, box_coordinates): if box_coordinates != []: box_coordinates = [box_coordinates[0], box_coordinates[1], box_coordinates[3], box_coordinates[4]] extracted_image = extract_box(image, box_coordinates) extracted_image.save("cropped_image.png") reader = easyocr.Reader(['en']) result = reader.readtext('cropped_image.png') texts = [] bboxs = [] for (bbox, text, prob) in result: texts.append(text) bboxs.append([bbox[0][0], bbox[0][1], bbox[2][0], bbox[2][1]]) height = image.size[1] width = image.size[0] image = image.convert("RGB") norm_boxes = [] for box in bboxs: norm_boxes.append(normalize_bbox(box, width, height)) encoding = processor(image, text_prompt, texts, boxes=norm_boxes, return_tensors="pt") predicted_ids = model.generate(**encoding) return processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] def normalize_bbox(bbox, width, height): return [ int(1000 * (bbox[0] / width)), int(1000 * (bbox[1] / height)), int(1000 * (bbox[2] / width)), int(1000 * (bbox[3] / height)), ] def extract_box(image, coordinates): if type(image) == str: image = Image.open(image) if coordinates==[]: return image else: x, y, x2, y2 = coordinates cropped_image = image.crop((x, y, x2, y2)) return cropped_image def infer_box(prompts, text_prompts): # background (original image) layers[0] ( point prompt) composite (total image) image = prompts["image"] if image is None: gr.Error("Please upload an image and draw a box before submitting") try: points = prompts["points"][0] except: points = [] return udop_box_inference(image, text_prompts, points) with gr.Blocks(title="UDOP") as demo: gr.Markdown("# UDOP") gr.Markdown("UDOP is a cutting-edge foundation model for a document understanding and generation.") gr.Markdown("Try UDOP in this demo. Simply upload a document, draw a box on part of the image you'd like UDOP to work and enter a prompt. If you don't draw a box, the model will take into account the whole image. You can try one of the examples to see how it works.") with gr.Row(): with gr.Column(): im = ImagePrompter(type="pil", label="Input Document") text_prompt = gr.Textbox(label = "Text Prompt with Task Prefix") btn = gr.Button("Submit") with gr.Column(): output = gr.Textbox(label="UDOP Output") with gr.Row(): gr.Examples( examples = [[PromptValue(image = "./dummy_pdf.png", points = [[87.0, 908.0, 2.0, 456.0, 972.0, 3.0]]), "Question answering. What is the objective?"], [PromptValue(image = "./docvqa_example (3).png", points = [[]]), "Question answering. How much is the total?"], [PromptValue(image = "./docvqa_example (3).png", points = [[]]), "Document Classification."]], inputs=[im, text_prompt], outputs=output, fn=infer_box, ) btn.click(infer_box, inputs=[im,text_prompt], outputs=[output]) demo.launch(debug=True)