Spaces:
Running
Running
File size: 8,055 Bytes
06c03b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
window.makeEstimates = function(){
var estimateScale = d3.scaleLinear()
.domain([.5 - .15, .5 + .15]).range([0, c.width])
.interpolate(d3.interpolateRound)
var jitterHeight = 90
var rs = 4 // rect size
var estimates = students[0].coinVals.map(d => ({val: .5, pctHead: .25, x: c.width/2, y: c.height - jitterHeight/2}))
var simulation = d3.forceSimulation(estimates)
.force('collide', d3.forceCollide(rs).strength(.1))
.stop()
function updateEstimates(){
var selectedStudents = students.all.slice(0, sliders.population)
selectedStudents[0].coinVals.map((_, i) => {
estimates[i].pctHead = d3.mean(selectedStudents, d => (d.coinVals[i] < sliders.headsProb) || d.plagerized)
estimates[i].val = (1 - estimates[i].pctHead)/(1 - sliders.headsProb)
})
updateSimulation(60)
}
updateEstimates()
function updateSimulation(ticks=80, yStrength=.005){
var variance = d3.variance(estimates, d => d.val)
var xStength = variance < .0005 ? .3 : .1
estimates.forEach(d => d.targetX = estimateScale(d.val))
simulation
.force('x', d3.forceX(d => d.targetX).strength(xStength))
.force('y', d3.forceY(c.height - jitterHeight/2).strength(yStrength))
.alpha(1)
// .alphaDecay(1 - Math.pow(0.001, 1/ticks))
for (var i = 0; i < ticks; ++i) simulation.tick()
estimates.forEach(d => {
d.x = Math.round(d.x)
d.y = Math.round(d.y)
})
}
updateSimulation(80, 1)
updateSimulation(80, .005)
// Set up DOM
var histogramSel = c.svg.append('g').translate([0, -25])
var axisSel = histogramSel.append('g.axis.state.init-hidden')
var histogramAxis = axisSel.append('g')
var numTicks = 6
var xAxis = d3.axisTop(estimateScale).ticks(numTicks).tickFormat(d3.format('.0%')).tickSize(100)
histogramAxis.call(xAxis).translate([.5, c.height + 5])
middleTick = histogramAxis.selectAll('g').filter((d, i) => i === 3)
middleTick.select('text').classed('bold', 1)
middleTick.select('line').st({stroke: '#000'})
histogramAxis.append('text.bold')
.text('actual non-plagiarism rate')
.translate([c.width/2, 11])
.st({fontSize: '10px'})
var containerSel = histogramSel.append('g#histogram').translate([0.5, .5])
// Selection overlay to highlight individual estimates.
var selectSize = rs*2 + 2
var selectColor = '#007276'
var rectFill = '#007276'
var activeSel = histogramSel.append('g.active.init-hidden.axis')
.st({pointerEvents: 'none'})
activeSel.append('rect')
.at({width: selectSize, height: selectSize, stroke: selectColor, fill: 'none', strokeWidth: 3})
.translate([-selectSize/2, -selectSize/2])
var activeTextHighlight = activeSel.append('rect')
.at({x: -32, width: 32*2, height: 18, y: -25, fill: 'rgba(255,255,255,.6)', rx: 10, ry: 10, xfill: 'red'})
var activeTextSel = activeSel.append('text.est-text.bold')
.text('34%')
.at({textAnchor: 'middle', textAnchor: 'middle', y: '-1em'})
.st({fill: selectColor})
var activePathSel = activeSel.append('path')
.st({stroke: selectColor, strokeWidth: 3})
// Update highlight DOM with current highlight
var curDrawData = {pctHead: .25, val: .5, x: c.width/2, y: c.height - jitterHeight/2}
function setActive(active, dur=0){
if (active !== estimates.active){
estimates.forEach(d => {
d.active = d == active
d.fy = d.active ? d.y : null
})
estimates.active = active
}
students.updateHeadsPos()
sel.flipCircle
.transition().duration(0).delay(d => d.i*5*(dur > 0 ? 1 : 0))
.at({transform: d => slides && slides.curSlide && slides.curSlide.showFlipCircle && d.coinVals[active.index] < sliders.headsProb ?
'scale(1)' : 'scale(.1)'})
flipCoinTimer.stop()
if (dur){
var objI = d3.interpolateObject(curDrawData, active)
flipCoinTimer = d3.timer(ms => {
var t = d3.easeCubicInOut(d3.clamp(0, ms/dur, 1))
drawData(objI(t))
if (t == 1) flipCoinTimer.stop()
})
} else{
drawData(active)
}
function drawData({pctHead, val, x, y}){
activeSel.translate([x + rs/2, y + rs/2])
activeTextSel.text('est. ' + d3.format('.1%')(val))
activePathSel.at({d: `M ${selectSize/2*Math.sign(c.width/2 - x)} -1 H ${c.width/2 - x}`})
var error = Math.abs(val - .5)
var fmt = d3.format(".1%")
var pop = sliders.population
d3.select('.rand-text')
// .html(`${fmt(1 - pctHead)} of students said they had never plagerized. Since about half the students flipped heads and automatically reported plagerizism, we double that to <span class='highlight square blue-box box'>estimate ${fmt(val)}</span> of students haven't plagerized—${error > .1 ? '' : error > .07 ? 'a little ' : 'not '}far from the actual rate of ${fmt(.5)}`)
// .html(`${Math.round((1 - pctHead)*pop)} of ${pop} students said they had never plagiarized. Since about half the students flipped heads and automatically reported plagiarism, we double that rate to <span class='highlight square blue-box box'>estimate ${fmt(val)}</span> of students haven't plagiarized—${error > .4 ? '' : error > .07 ? 'a little ' : 'not '}far from the actual rate of ${fmt(.5)}`)
.html(`Here, ${fmt(1 - pctHead)} students said they had never plagiarized. Doubling that, we <span class='highlight square blue-box box'>estimate ${fmt(val)}</span> of students haven't plagiarized—${error > .1 ? 'quite ' : error > .07 ? 'a little ' : 'not '}far from the actual rate of ${fmt(.5)}`)
curDrawData = {pctHead, val, x, y}
}
}
window.flipCoinTimer = d3.timer(d => d)
var estimateSel = containerSel.appendMany('rect.estimate', estimates)
.at({width: rs, height: rs, stroke: '#fff', fill: rectFill, strokeWidth: .5})
.st({fill: rectFill})
.translate([rs/2, rs/2])
.on('mouseover', (d, i) => {
if (window.slides.curSlide.showHistogram) {
setActive(d)
}
})
function setSelectorOpacity(textOpacity, strokeOpacity) {
activeTextSel.st({opacity: textOpacity})
activeSel.st({opacity: strokeOpacity})
activePathSel.st({opacity: strokeOpacity})
}
function render(transition=false){
estimateSel.translate(d => [d.x, d.y])
setActive(estimates.active)
if (transition){
if (window.flipAllCoinsTimer) window.flipAllCoinsTimer.stop()
window.flipAllCoinsTimer = d3.timer(ms => {
var t = d3.easeExpIn(d3.clamp(0, ms/5000, 1), 20)
if (flipAllCoinsTimer.forceEnd) t = 1
if (t > .028) {
setSelectorOpacity(textOpacity=0, strokeOpacity=0.7)
}
var index = Math.floor((estimates.length - 2)*t) + 1
estimateSel.classed('active', (d, i) => i <= index)
setActive(estimates[index])
// flipCoinsSel.text('Flip coins ' + d3.format('03')(index < 100 ? index : index + 1) + ' times')
flipCoinsSel.text('Flip coins 200 times')
if (t == 1) {
flipAllCoinsTimer.stop()
setSelectorOpacity(textOpacity=1, strokeOpacity=1)
}
})
} else {
setSelectorOpacity(textOpacity=1, strokeOpacity=1)
flipCoinsSel
}
}
window.flipAllCoinsTimer = d3.timer(d => d)
var flipCoinsSel = d3.select('.flip-coins').on('click', () => {
students.all.forEach(student => {
student.coinVals = student.coinVals.map(j => Math.random())
})
updateEstimates()
render(true)
})
d3.select('.flip-coins-once').on('click', flipCoin)
function flipCoin(){
active = estimates[0]
students.all.forEach(student => {
student.coinVals = student.coinVals.map(j => Math.random())
})
active.fy = active.y = c.height - jitterHeight/2
updateEstimates()
estimateSel.translate(d => [d.x, d.y])
estimates.active = null
setActive(active, 1000)
}
Object.assign(estimates, {updateEstimates, setActive, render, flipCoin, axisSel, containerSel, estimateSel, activeSel})
return estimates
}
if (window.init) window.init() |