Spaces:
Running
Running
File size: 2,015 Bytes
06c03b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
window.makeSlides = function(){
var slides = [
{
xKey: 'grid',
circleDelayFn: d => axii.ageScale(d.age),
showFlipRect: 0,
populationTarget: 144,
headsProbTarget: .5,
},
{
xKey: 'age',
showAgeAxis: 1,
},
{
xKey: 'ageState',
showStateAxis: 1,
},
{
showUniqueBox: 1
},
{
xKey: 'ageStateSeason',
showUniqueBox: 1,
showUniqueSeasonBox: 1,
showSeasonAxis: 1,
},
{
xKey: 'heads',
showUniqueBox: 0,
showUniqueSeasonBox: 0,
showSeasonAxis: 0,
showAgeAxis: 0,
showStateAxis: 0,
showHeadAxis: 1,
},
{
showFlipCircle: 1,
showHeadCaptionAxis: 1,
},
// Flip coin
{
xKey: 'plagerizedShifted',
showHeadAxis: 0,
showHeadCaptionAxis: 0,
showHistogramAxis: 1,
},
// Exactly how far off can these estimates be after adding noise? Flip more coins to see the distribution.
{
enterHistogram: 1,
showHistogram: 1,
// showPlagerizedAxis: 0,
showEstimate: 1,
},
// Reducing the random noise increases our point estimate, but risks leaking information about students.
{
animateHeadsProbSlider: 1,
animatePopulationSlider: 1,
enterHistogram: 0,
name: 'noise',
headsProbTarget: .35,
},
// If we collect information from lots of people, we can have high accuracy and protect everyone's privacy.
{
showEstimate: 0,
showAllStudents: 1,
name: 'population',
animateHeadsProbSlider: -1,
animatePopulationSlider: 1,
populationTarget: 400,
},
]
var keys = []
slides.forEach((d, i) => {
keys = keys.concat(d3.keys(d))
d.index = i
})
_.uniq(keys).forEach(str => {
var prev = null
slides.forEach(d => {
if (typeof(d[str]) === 'undefined'){
d[str] = prev
}
prev = d[str]
})
})
return slides
}
if (window.init) window.init()
|