merve's picture
merve HF staff
Update app.py
6c02759 verified
from huggingface_hub import hf_hub_download
import re
from PIL import Image
import requests
from nougat.dataset.rasterize import rasterize_paper
from transformers import NougatProcessor, VisionEncoderDecoderModel
import torch
import gradio as gr
import uuid
import os
import spaces
processor = NougatProcessor.from_pretrained("facebook/nougat-small")
model = VisionEncoderDecoderModel.from_pretrained("facebook/nougat-small")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def get_pdf(pdf_link):
unique_filename = f"{os.getcwd()}/downloaded_paper_{uuid.uuid4().hex}.pdf"
response = requests.get(pdf_link)
if response.status_code == 200:
with open(unique_filename, 'wb') as pdf_file:
pdf_file.write(response.content)
print("PDF downloaded successfully.")
else:
print("Failed to download the PDF.")
return unique_filename
@spaces.GPU
def predict(image):
# prepare PDF image for the model
image = Image.open(image)
pixel_values = processor(image, return_tensors="pt").pixel_values
# generate transcription (here we only generate 30 tokens)
outputs = model.generate(
pixel_values.to(device),
min_length=1,
max_new_tokens=1500,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
)
page_sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
page_sequence = processor.post_process_generation(page_sequence, fix_markdown=False)
return page_sequence
def inference(pdf_file, pdf_link):
if pdf_file is None:
if pdf_link == '':
print("No file is uploaded and No link is provided")
return "No data provided. Upload a pdf file or provide a pdf link and try again!"
else:
file_name = get_pdf(pdf_link)
else:
file_name = pdf_file.name
pdf_name = pdf_file.name.split('/')[-1].split('.')[0]
images = rasterize_paper(file_name, return_pil=True)
sequence = ""
#ย infer for every page and concat
for image in images:
sequence += predict(image)
content = sequence.replace(r'\(', '$').replace(r'\)', '$').replace(r'\[', '$$').replace(r'\]', '$$')
with open(f"{os.getcwd()}/output.md","w+") as f:
f.write(content)
f.close()
return content, f"{os.getcwd()}/output.md"
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Nougat: Neural Optical Understanding for Academic Documents ๐Ÿซ<center><h1>")
gr.HTML("<h3><center>Lukas Blecher et al. <a href='https://arxiv.org/pdf/2308.13418.pdf' target='_blank'>Paper</a>, <a href='https://facebookresearch.github.io/nougat/'>Project</a><center></h3>")
gr.HTML("<h3><center>This demo is based on transformers implementation of Nougat ๐Ÿค—<center><h3>")
with gr.Row():
mkd = gr.Markdown('<h4><center>Upload a PDF</center></h4>')
mkd = gr.Markdown('<h4><center><i>OR</i></center></h4>')
mkd = gr.Markdown('<h4><center>Provide a PDF link</center></h4>')
with gr.Row(equal_height=True):
pdf_file = gr.File(label='PDF ๐Ÿ“‘', file_count='single', scale=1)
pdf_link = gr.Textbox(placeholder='Enter an arxiv link here', label='Link to Paper๐Ÿ”—', scale=1)
with gr.Row():
btn = gr.Button('Run Nougat ๐Ÿซ')
with gr.Row():
clr = gr.Button('Clear Inputs & Outputs ๐Ÿงผ')
output_headline = gr.Markdown("## PDF converted to markup language through Nougat-OCR๐Ÿ‘‡")
with gr.Row():
parsed_output = gr.Markdown(elem_id='mkd', value='Output Text ๐Ÿ“')
output_file = gr.File(file_types = ["txt"], label="Output File ๐Ÿ“‘")
btn.click(inference, [pdf_file, pdf_link], [parsed_output, output_file])
clr.click(lambda : (gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
gr.update(value=None)),
[],
[pdf_file, pdf_link, parsed_output, output_file]
)
gr.Examples(
[["nougat.pdf", ""], [None, "https://arxiv.org/pdf/2308.08316.pdf"]],
inputs = [pdf_file, pdf_link],
outputs = [parsed_output, output_file],
fn=inference,
cache_examples=True,
label='Click on any Examples below to get Nougat OCR results quickly:'
)
demo.queue()
demo.launch(debug=True)