Spaces:
Running
Running
Use gr.AnnotatedImage (#1)
Browse files- Use gr.AnnotatedImage (d758ed068747f853c3c1918c0f5f402ad1816f79)
Co-authored-by: hysts <[email protected]>
- app.py +18 -29
- requirements.txt +0 -1
app.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import torch
|
2 |
-
import cv2
|
3 |
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
6 |
|
7 |
|
@@ -26,52 +24,43 @@ def query_image(img, text_queries, score_threshold):
|
|
26 |
|
27 |
with torch.no_grad():
|
28 |
outputs = model(**inputs)
|
29 |
-
|
30 |
outputs.logits = outputs.logits.cpu()
|
31 |
-
outputs.pred_boxes = outputs.pred_boxes.cpu()
|
32 |
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
|
33 |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
|
34 |
|
35 |
-
|
36 |
-
|
37 |
for box, score, label in zip(boxes, scores, labels):
|
38 |
box = [int(i) for i in box.tolist()]
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
y = box[3] - 10
|
44 |
-
else:
|
45 |
-
y = box[3] + 25
|
46 |
-
|
47 |
-
img = cv2.putText(
|
48 |
-
img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA
|
49 |
-
)
|
50 |
-
return img
|
51 |
|
52 |
|
53 |
description = """
|
54 |
-
Try this demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlv2">OWLv2</a>,
|
55 |
-
introduced in <a href="https://arxiv.org/abs/2306.09683">Scaling Open-Vocabulary Object Detection</a>.
|
56 |
-
\n\n Compared to OWLVIT, OWLv2 performs better both in yield and performance (average precision).
|
57 |
-
You can use OWLv2 to query images with text descriptions of any object.
|
58 |
To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You
|
59 |
-
can also use the score threshold slider to set a threshold to filter out low probability predictions.
|
60 |
\n\nOWL-ViT is trained on text templates,
|
61 |
-
hence you can get better predictions by querying the image with text templates used in training the original model: e.g. *"photo of a star-spangled banner"*,
|
62 |
*"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data.
|
63 |
\n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a>
|
64 |
"""
|
65 |
demo = gr.Interface(
|
66 |
-
query_image,
|
67 |
-
inputs=[gr.Image(), "text", gr.Slider(0, 1, value=0.1)],
|
68 |
-
outputs="
|
69 |
title="Zero-Shot Object Detection with OWLv2",
|
70 |
description=description,
|
71 |
examples=[
|
72 |
-
["assets/astronaut.png", "human face, rocket, star-spangled banner, nasa badge", 0.11],
|
73 |
["assets/coffee.png", "coffee mug, spoon, plate", 0.1],
|
74 |
["assets/butterflies.jpeg", "orange butterfly", 0.3],
|
75 |
],
|
76 |
)
|
77 |
-
demo.launch()
|
|
|
1 |
import torch
|
|
|
2 |
import gradio as gr
|
|
|
3 |
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
4 |
|
5 |
|
|
|
24 |
|
25 |
with torch.no_grad():
|
26 |
outputs = model(**inputs)
|
27 |
+
|
28 |
outputs.logits = outputs.logits.cpu()
|
29 |
+
outputs.pred_boxes = outputs.pred_boxes.cpu()
|
30 |
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
|
31 |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
|
32 |
|
33 |
+
result_labels = []
|
|
|
34 |
for box, score, label in zip(boxes, scores, labels):
|
35 |
box = [int(i) for i in box.tolist()]
|
36 |
+
if score < score_threshold:
|
37 |
+
continue
|
38 |
+
result_labels.append((box, text_queries[label.item()]))
|
39 |
+
return img, result_labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
description = """
|
43 |
+
Try this demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlv2">OWLv2</a>,
|
44 |
+
introduced in <a href="https://arxiv.org/abs/2306.09683">Scaling Open-Vocabulary Object Detection</a>.
|
45 |
+
\n\n Compared to OWLVIT, OWLv2 performs better both in yield and performance (average precision).
|
46 |
+
You can use OWLv2 to query images with text descriptions of any object.
|
47 |
To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You
|
48 |
+
can also use the score threshold slider to set a threshold to filter out low probability predictions.
|
49 |
\n\nOWL-ViT is trained on text templates,
|
50 |
+
hence you can get better predictions by querying the image with text templates used in training the original model: e.g. *"photo of a star-spangled banner"*,
|
51 |
*"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data.
|
52 |
\n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a>
|
53 |
"""
|
54 |
demo = gr.Interface(
|
55 |
+
query_image,
|
56 |
+
inputs=[gr.Image(), "text", gr.Slider(0, 1, value=0.1)],
|
57 |
+
outputs="annotatedimage",
|
58 |
title="Zero-Shot Object Detection with OWLv2",
|
59 |
description=description,
|
60 |
examples=[
|
61 |
+
["assets/astronaut.png", "human face, rocket, star-spangled banner, nasa badge", 0.11],
|
62 |
["assets/coffee.png", "coffee mug, spoon, plate", 0.1],
|
63 |
["assets/butterflies.jpeg", "orange butterfly", 0.3],
|
64 |
],
|
65 |
)
|
66 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -2,5 +2,4 @@ numpy>=1.18.5
|
|
2 |
torch>=1.7.0
|
3 |
torchvision>=0.8.1
|
4 |
git+https://github.com/nielsrogge/transformers@add_owlv2
|
5 |
-
opencv-python
|
6 |
scipy
|
|
|
2 |
torch>=1.7.0
|
3 |
torchvision>=0.8.1
|
4 |
git+https://github.com/nielsrogge/transformers@add_owlv2
|
|
|
5 |
scipy
|