Update app.py
Browse files
app.py
CHANGED
@@ -4,17 +4,25 @@ import torch
|
|
4 |
from PIL import Image
|
5 |
from transformers import SamModel, SamProcessor
|
6 |
from gradio_image_prompter import ImagePrompter
|
7 |
-
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
-
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(
|
11 |
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
12 |
-
slimsam_model = SamModel.from_pretrained("nielsr/slimsam-50-uniform").to(
|
13 |
slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
|
14 |
|
15 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
18 |
Image.fromarray(image),
|
19 |
input_boxes=[[[[x_min, y_min, x_max, y_max]]]],
|
20 |
return_tensors="pt"
|
@@ -23,7 +31,7 @@ def sam_box_inference(image, model, x_min, y_min, x_max, y_max):
|
|
23 |
with torch.no_grad():
|
24 |
outputs = model(**inputs)
|
25 |
|
26 |
-
mask =
|
27 |
outputs.pred_masks.cpu(),
|
28 |
inputs["original_sizes"].cpu(),
|
29 |
inputs["reshaped_input_sizes"].cpu()
|
@@ -33,17 +41,20 @@ def sam_box_inference(image, model, x_min, y_min, x_max, y_max):
|
|
33 |
print(mask.shape)
|
34 |
return [(mask, "mask")]
|
35 |
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
|
|
39 |
image,
|
40 |
input_points=[[[x, y]]],
|
41 |
return_tensors="pt").to(device)
|
42 |
|
43 |
with torch.no_grad():
|
44 |
-
outputs =
|
45 |
|
46 |
-
mask =
|
47 |
outputs.pred_masks.cpu(),
|
48 |
inputs["original_sizes"].cpu(),
|
49 |
inputs["reshaped_input_sizes"].cpu()
|
@@ -72,8 +83,8 @@ def infer_point(img):
|
|
72 |
center_x = int(np.mean(nonzero_indices[1]))
|
73 |
center_y = int(np.mean(nonzero_indices[0]))
|
74 |
print("Point inference returned.")
|
75 |
-
return ((image, sam_point_inference(image,
|
76 |
-
(image, sam_point_inference(image,
|
77 |
|
78 |
def infer_box(prompts):
|
79 |
# background (original image) layers[0] ( point prompt) composite (total image)
|
@@ -86,8 +97,8 @@ def infer_box(prompts):
|
|
86 |
print(points)
|
87 |
|
88 |
# x_min = points[0] x_max = points[3] y_min = points[1] y_max = points[4]
|
89 |
-
return ((image, sam_box_inference(image,
|
90 |
-
(image, sam_box_inference(image,
|
91 |
with gr.Blocks(title="SlimSAM") as demo:
|
92 |
gr.Markdown("# SlimSAM")
|
93 |
gr.Markdown("SlimSAM is the pruned-distilled version of SAM that is smaller.")
|
|
|
4 |
from PIL import Image
|
5 |
from transformers import SamModel, SamProcessor
|
6 |
from gradio_image_prompter import ImagePrompter
|
7 |
+
import spaces
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to("cuda")
|
11 |
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
12 |
+
slimsam_model = SamModel.from_pretrained("nielsr/slimsam-50-uniform").to("cuda")
|
13 |
slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
|
14 |
|
15 |
+
def get_processor_and_model(slim: bool):
|
16 |
+
if slim:
|
17 |
+
return slimsam_processor, slimsam_model
|
18 |
+
return sam_processor, sam_model
|
19 |
+
|
20 |
+
@spaces.GPU
|
21 |
+
def sam_box_inference(image, x_min, y_min, x_max, y_max, *, slim=False):
|
22 |
|
23 |
+
processor, model = get_processor_and_model(slim)
|
24 |
+
|
25 |
+
inputs = processor(
|
26 |
Image.fromarray(image),
|
27 |
input_boxes=[[[[x_min, y_min, x_max, y_max]]]],
|
28 |
return_tensors="pt"
|
|
|
31 |
with torch.no_grad():
|
32 |
outputs = model(**inputs)
|
33 |
|
34 |
+
mask = processor.image_processor.post_process_masks(
|
35 |
outputs.pred_masks.cpu(),
|
36 |
inputs["original_sizes"].cpu(),
|
37 |
inputs["reshaped_input_sizes"].cpu()
|
|
|
41 |
print(mask.shape)
|
42 |
return [(mask, "mask")]
|
43 |
|
44 |
+
@spaces.GPU
|
45 |
+
def sam_point_inference(image, x, y, *, slim=False):
|
46 |
|
47 |
+
processor, model = get_processor_and_model(slim)
|
48 |
+
|
49 |
+
inputs = processor(
|
50 |
image,
|
51 |
input_points=[[[x, y]]],
|
52 |
return_tensors="pt").to(device)
|
53 |
|
54 |
with torch.no_grad():
|
55 |
+
outputs = model(**inputs)
|
56 |
|
57 |
+
mask = processor.post_process_masks(
|
58 |
outputs.pred_masks.cpu(),
|
59 |
inputs["original_sizes"].cpu(),
|
60 |
inputs["reshaped_input_sizes"].cpu()
|
|
|
83 |
center_x = int(np.mean(nonzero_indices[1]))
|
84 |
center_y = int(np.mean(nonzero_indices[0]))
|
85 |
print("Point inference returned.")
|
86 |
+
return ((image, sam_point_inference(image, center_x, center_y, slim=True)),
|
87 |
+
(image, sam_point_inference(image, center_x, center_y)))
|
88 |
|
89 |
def infer_box(prompts):
|
90 |
# background (original image) layers[0] ( point prompt) composite (total image)
|
|
|
97 |
print(points)
|
98 |
|
99 |
# x_min = points[0] x_max = points[3] y_min = points[1] y_max = points[4]
|
100 |
+
return ((image, sam_box_inference(image, points[0], points[1], points[3], points[4], slim=True)),
|
101 |
+
(image, sam_box_inference(image, points[0], points[1], points[3], points[4])))
|
102 |
with gr.Blocks(title="SlimSAM") as demo:
|
103 |
gr.Markdown("# SlimSAM")
|
104 |
gr.Markdown("SlimSAM is the pruned-distilled version of SAM that is smaller.")
|