Spaces:
Sleeping
Sleeping
import os | |
import psycopg2 | |
import streamlit as st | |
from datetime import datetime | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain, RetrievalQA | |
from huggingface_hub import login | |
# Login to Hugging Face | |
login(token=st.secrets["HF_TOKEN"]) | |
# Load FAISS index and ensure it only happens once | |
if 'db' not in st.session_state: | |
st.session_state.db = FAISS.load_local( | |
"faiss_index", | |
HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), | |
allow_dangerous_deserialization=True | |
) | |
# Use session state for retriever | |
retriever = st.session_state.db.as_retriever( | |
search_type="mmr", | |
search_kwargs={'k': 1} | |
) | |
# Define prompt template | |
prompt_template = """ | |
### [INST] | |
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH | |
Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider? | |
Answer in french only | |
{context} | |
Vous devez répondre aux questions en français. | |
### QUESTION: | |
{question} | |
[/INST] | |
Answer in french only | |
Vous devez répondre aux questions en français. | |
""" | |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
# Load the model only once | |
if 'mistral_llm' not in st.session_state: | |
st.session_state.mistral_llm = HuggingFaceEndpoint( | |
repo_id=repo_id, | |
max_length=2048, | |
temperature=0.05, | |
huggingfacehub_api_token=st.secrets["HF_TOKEN"] | |
) | |
# Create prompt and LLM chain | |
prompt = PromptTemplate( | |
input_variables=["question"], | |
template=prompt_template, | |
) | |
llm_chain = LLMChain(llm=st.session_state.mistral_llm, prompt=prompt) | |
# Create QA chain | |
qa = RetrievalQA.from_chain_type( | |
llm=st.session_state.mistral_llm, | |
chain_type="stuff", | |
retriever=retriever, | |
chain_type_kwargs={"prompt": prompt}, | |
) | |
def chatbot_response(user_input): | |
response = qa.run(user_input) | |
return response | |
# Create columns for logos | |
col1, col2, col3 = st.columns([2, 3, 2]) | |
with col1: | |
st.image("Design 3_22.png", width=150, use_column_width=True) | |
with col3: | |
st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) | |
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True) | |
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True) | |
# Input and button for user interaction | |
user_input = st.text_input("You:", "") | |
submit_button = st.button("Ask 📨") | |
import os | |
import streamlit as st | |
import psycopg2 | |
from datetime import datetime | |
# Function to create a connection to PostgreSQL | |
def create_connection(): | |
return psycopg2.connect( | |
host=os.getenv("DB_HOST"), | |
database=os.getenv("DB_NAME"), | |
user=os.getenv("DB_USER"), | |
password=os.getenv("DB_PASSWORD"), | |
port=os.getenv("DB_PORT") | |
) | |
# Function to create the feedback table if it doesn't exist | |
def create_feedback_table(conn): | |
cursor = conn.cursor() | |
cursor.execute(""" | |
CREATE TABLE IF NOT EXISTS feedback ( | |
id SERIAL PRIMARY KEY, | |
user_input TEXT NOT NULL, | |
bot_response TEXT NOT NULL, | |
rating INT CHECK (rating >= 1 AND rating <= 5), | |
comment TEXT, | |
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP | |
); | |
""") | |
conn.commit() | |
cursor.close() | |
# Function to insert feedback into the database | |
def insert_feedback(conn, user_input, bot_response, rating, comment): | |
cursor = conn.cursor() | |
cursor.execute( | |
"INSERT INTO feedback (user_input, bot_response, rating, comment, timestamp) VALUES (%s, %s, %s, %s, %s)", | |
(user_input, bot_response, rating, comment, datetime.now()) | |
) | |
conn.commit() | |
cursor.close() | |
# Initialize connection and create the table if necessary | |
conn = create_connection() | |
create_feedback_table(conn) | |
# Streamlit app UI and logic | |
st.markdown("## Rate your experience") | |
# Create a star-based rating system using radio buttons | |
rating = st.radio( | |
"Rating", | |
options=[1, 2, 3, 4, 5], | |
format_func=lambda x: "★" * x # Display stars based on the rating | |
) | |
# Text area for leaving a comment | |
comment = st.text_area("Leave a comment") | |
# Display bot response and user input for context | |
st.markdown("### Your Question:") | |
st.write(user_input) | |
st.markdown("### Bot's Response:") | |
st.write(bot_response) | |
# Submit feedback | |
if st.button("Submit Feedback"): | |
if rating and comment: | |
insert_feedback(conn, user_input, bot_response, rating, comment) | |
st.success("Thank you for your feedback!") | |
else: | |
st.warning("Please provide a rating and a comment.") | |
# Close the connection when done | |
conn.close() | |
# Motivational quote at the bottom | |
st.markdown("---") | |
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.") |