Spaces:
Sleeping
Sleeping
import os | |
import csv | |
import streamlit as st | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain, RetrievalQA | |
from huggingface_hub import login | |
# Login to Hugging Face | |
login(token=st.secrets["HF_TOKEN"]) | |
# Load FAISS index and ensure it only happens once | |
if 'db' not in st.session_state: | |
st.session_state.db = FAISS.load_local( | |
"faiss_index", | |
HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), | |
allow_dangerous_deserialization=True | |
) | |
# Use session state for retriever | |
retriever = st.session_state.db.as_retriever( | |
search_type="mmr", | |
search_kwargs={'k': 1} | |
) | |
# Define prompt template | |
prompt_template = """ | |
### [INST] | |
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH | |
Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider? | |
Answer in french only | |
{context} | |
Vous devez répondre aux questions en français. | |
### QUESTION: | |
{question} | |
[/INST] | |
Answer in french only | |
Vous devez répondre aux questions en français. | |
""" | |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
# Load the model only once | |
if 'mistral_llm' not in st.session_state: | |
st.session_state.mistral_llm = HuggingFaceEndpoint( | |
repo_id=repo_id, | |
max_length=2048, | |
temperature=0.05, | |
huggingfacehub_api_token=st.secrets["HF_TOKEN"] | |
) | |
# Create prompt and LLM chain | |
prompt = PromptTemplate( | |
input_variables=["question"], | |
template=prompt_template, | |
) | |
llm_chain = LLMChain(llm=st.session_state.mistral_llm, prompt=prompt) | |
# Create QA chain | |
qa = RetrievalQA.from_chain_type( | |
llm=st.session_state.mistral_llm, | |
chain_type="stuff", | |
retriever=retriever, | |
chain_type_kwargs={"prompt": prompt}, | |
) | |
# Streamlit UI setup | |
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖") | |
# Define function to handle user input and display chatbot response | |
def chatbot_response(user_input): | |
response = qa.run(user_input) | |
return response | |
# Define function to save feedback to CSV | |
def save_feedback(question, response, rating, comment): | |
try: | |
filename = '/tmp/feedback.csv' # Use /tmp directory for temporary storage in Spaces | |
file_exists = os.path.isfile(filename) | |
with open(filename, 'a', newline='', encoding='utf-8') as csvfile: | |
fieldnames = ['question', 'response', 'rating', 'comment'] | |
writer = csv.DictWriter(csvfile, fieldnames=fieldnames) | |
if not file_exists: | |
writer.writeheader() | |
writer.writerow({'question': question, 'response': response, 'rating': rating, 'comment': comment}) | |
st.success("Thank you for your feedback! It has been saved.") | |
except Exception as e: | |
st.error(f"Error saving feedback: {e}") | |
# Use session state to store user input, bot response, rating, and comment | |
if 'user_input' not in st.session_state: | |
st.session_state.user_input = "" | |
if 'bot_response' not in st.session_state: | |
st.session_state.bot_response = "" | |
if 'rating' not in st.session_state: | |
st.session_state.rating = 3 # Default rating | |
if 'comment' not in st.session_state: | |
st.session_state.comment = "" | |
# Create columns for logos | |
col1, col2, col3 = st.columns([2, 3, 2]) | |
with col1: | |
st.image("Design 3_22.png", width=150, use_column_width=True) | |
with col3: | |
st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) | |
# Add CSS for styling | |
st.markdown(""" | |
<style> | |
.centered-text { | |
text-align: center; | |
} | |
.centered-orange-text { | |
text-align: center; | |
color: darkorange; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Center and color text | |
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True) | |
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True) | |
# Input and button for user interaction | |
st.session_state.user_input = st.text_input("You:", st.session_state.user_input) | |
if st.button("Ask 📨"): | |
if st.session_state.user_input.strip() != "": | |
st.session_state.bot_response = chatbot_response(st.session_state.user_input) | |
if st.session_state.bot_response: | |
st.markdown("### Bot:") | |
st.text_area("", value=st.session_state.bot_response, height=600) | |
# Feedback Section | |
st.markdown("### Évaluation de la réponse") | |
st.session_state.rating = st.slider("Rating (1 to 5)", 1, 5, st.session_state.rating) | |
st.session_state.comment = st.text_area("Your comment:", st.session_state.comment) | |
if st.button("Submit Feedback"): | |
if st.session_state.comment.strip() != "": | |
save_feedback(st.session_state.user_input, st.session_state.bot_response, st.session_state.rating, st.session_state.comment) | |
else: | |
st.warning("⚠️ Please enter a comment.") | |
# Motivational quote at the bottom | |
st.markdown("---") | |
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.") | |