Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,56 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
import pandas as pd
|
4 |
from langchain_community.vectorstores import FAISS
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain_huggingface import HuggingFaceEndpoint
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
-
from langchain.chains import LLMChain
|
9 |
-
|
10 |
-
from
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
|
|
16 |
login(token=st.secrets["HF_TOKEN"])
|
17 |
|
18 |
-
#
|
19 |
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True)
|
20 |
-
|
21 |
-
# Set up retriever
|
22 |
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1})
|
23 |
|
24 |
-
# Prompt template for the LLM
|
25 |
prompt_template = """
|
26 |
### [INST]
|
27 |
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH.
|
28 |
-
Analyse carefully the context and provide a direct answer based on the context. If the user
|
29 |
-
Answer in
|
30 |
-
|
31 |
{context}
|
32 |
Vous devez répondre aux questions en français.
|
33 |
|
34 |
### QUESTION:
|
35 |
{question}
|
36 |
[/INST]
|
37 |
-
Answer in
|
38 |
-
Vous devez répondre aux questions en français.
|
39 |
"""
|
40 |
|
41 |
-
# Set up the LLM from Hugging Face
|
42 |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
43 |
|
44 |
mistral_llm = HuggingFaceEndpoint(
|
@@ -51,11 +63,10 @@ prompt = PromptTemplate(
|
|
51 |
template=prompt_template,
|
52 |
)
|
53 |
|
54 |
-
# Create
|
55 |
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)
|
56 |
|
57 |
-
#
|
58 |
-
retriever.search_kwargs = {'k': 1}
|
59 |
qa = RetrievalQA.from_chain_type(
|
60 |
llm=mistral_llm,
|
61 |
chain_type="stuff",
|
@@ -63,52 +74,116 @@ qa = RetrievalQA.from_chain_type(
|
|
63 |
chain_type_kwargs={"prompt": prompt},
|
64 |
)
|
65 |
|
66 |
-
# Streamlit interface
|
67 |
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")
|
68 |
|
69 |
-
#
|
70 |
def chatbot_response(user_input):
|
71 |
response = qa.run(user_input)
|
72 |
return response
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
st.markdown("---")
|
114 |
-
st.markdown("
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain_huggingface import HuggingFaceEndpoint
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.chains import LLMChain, RetrievalQA
|
8 |
+
import gspread
|
9 |
+
from oauth2client.service_account import ServiceAccountCredentials
|
10 |
+
import json
|
11 |
+
|
12 |
+
import gspread
|
13 |
+
from oauth2client.service_account import ServiceAccountCredentials
|
14 |
+
import json
|
15 |
+
|
16 |
+
# Load Google service account credentials from Hugging Face secrets
|
17 |
+
GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"]
|
18 |
+
|
19 |
+
# Google Sheets setup
|
20 |
+
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
21 |
+
service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON)
|
22 |
+
creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope)
|
23 |
+
client = gspread.authorize(creds)
|
24 |
+
sheet = client.open("users feedback").sheet1 # Replace with your Google Sheet name
|
25 |
+
# Function to save user feedback to Google Sheets
|
26 |
+
def save_feedback(user_input, bot_response, rating, comment):
|
27 |
+
feedback = [user_input, bot_response, rating, comment]
|
28 |
+
sheet.append_row(feedback)
|
29 |
|
30 |
+
# Hugging Face API login
|
31 |
+
from huggingface_hub import login
|
32 |
login(token=st.secrets["HF_TOKEN"])
|
33 |
|
34 |
+
# Initialize LangChain components
|
35 |
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True)
|
|
|
|
|
36 |
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1})
|
37 |
|
|
|
38 |
prompt_template = """
|
39 |
### [INST]
|
40 |
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH.
|
41 |
+
Analyse carefully the context and provide a direct answer based on the context. If the user says Bonjour or Hello, your only answer will be: Hi! comment puis-je vous aider?
|
42 |
+
Answer in french only
|
43 |
+
|
44 |
{context}
|
45 |
Vous devez répondre aux questions en français.
|
46 |
|
47 |
### QUESTION:
|
48 |
{question}
|
49 |
[/INST]
|
50 |
+
Answer in french only
|
51 |
+
Vous devez répondre aux questions en français.
|
52 |
"""
|
53 |
|
|
|
54 |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
55 |
|
56 |
mistral_llm = HuggingFaceEndpoint(
|
|
|
63 |
template=prompt_template,
|
64 |
)
|
65 |
|
66 |
+
# Create llm chain
|
67 |
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)
|
68 |
|
69 |
+
# Create RetrievalQA chain
|
|
|
70 |
qa = RetrievalQA.from_chain_type(
|
71 |
llm=mistral_llm,
|
72 |
chain_type="stuff",
|
|
|
74 |
chain_type_kwargs={"prompt": prompt},
|
75 |
)
|
76 |
|
77 |
+
# Streamlit interface with improved aesthetics
|
78 |
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")
|
79 |
|
80 |
+
# Define function to handle user input and display chatbot response
|
81 |
def chatbot_response(user_input):
|
82 |
response = qa.run(user_input)
|
83 |
return response
|
84 |
|
85 |
+
# Create columns for logos
|
86 |
+
col1, col2, col3 = st.columns([2, 3, 2])
|
87 |
+
|
88 |
+
with col1:
|
89 |
+
st.image("Design 3_22.png", width=150, use_column_width=True) # Adjust image path and size as needed
|
90 |
+
|
91 |
+
with col3:
|
92 |
+
st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # Adjust image path and size as needed
|
93 |
+
|
94 |
+
# Streamlit components
|
95 |
+
st.markdown("""
|
96 |
+
<style>
|
97 |
+
.centered-text {
|
98 |
+
text-align: center;
|
99 |
+
}
|
100 |
+
.stars {
|
101 |
+
font-size: 24px;
|
102 |
+
color: lightgray;
|
103 |
+
cursor: pointer;
|
104 |
+
}
|
105 |
+
.stars:hover,
|
106 |
+
.stars.selected {
|
107 |
+
color: gold;
|
108 |
+
}
|
109 |
+
.stars.filled {
|
110 |
+
color: gold;
|
111 |
+
}
|
112 |
+
</style>
|
113 |
+
""", unsafe_allow_html=True)
|
114 |
+
|
115 |
+
# Star rating system with JavaScript
|
116 |
+
st.markdown("""
|
117 |
+
<script>
|
118 |
+
function setRating(starId) {
|
119 |
+
const stars = document.querySelectorAll('.stars');
|
120 |
+
stars.forEach(star => star.classList.remove('filled'));
|
121 |
+
document.querySelectorAll('.stars').forEach(star => {
|
122 |
+
if (star.dataset.rating <= starId) {
|
123 |
+
star.classList.add('filled');
|
124 |
+
}
|
125 |
+
});
|
126 |
+
document.getElementById('rating').value = starId;
|
127 |
+
}
|
128 |
+
document.addEventListener('DOMContentLoaded', (event) => {
|
129 |
+
document.querySelectorAll('.stars').forEach(star => {
|
130 |
+
star.addEventListener('click', () => {
|
131 |
+
setRating(star.dataset.rating);
|
132 |
+
});
|
133 |
+
});
|
134 |
+
});
|
135 |
+
</script>
|
136 |
+
""", unsafe_allow_html=True)
|
137 |
+
|
138 |
+
# Display star rating
|
139 |
+
st.markdown('<div class="stars" data-rating="1">★</div>', unsafe_allow_html=True)
|
140 |
+
st.markdown('<div class="stars" data-rating="2">★</div>', unsafe_allow_html=True)
|
141 |
+
st.markdown('<div class="stars" data-rating="3">★</div>', unsafe_allow_html=True)
|
142 |
+
st.markdown('<div class="stars" data-rating="4">★</div>', unsafe_allow_html=True)
|
143 |
+
st.markdown('<div class="stars" data-rating="5">★</div>', unsafe_allow_html=True)
|
144 |
+
|
145 |
+
# Hidden input field to store the rating value
|
146 |
+
st.markdown('<input type="hidden" id="rating" value="0">', unsafe_allow_html=True)
|
147 |
+
|
148 |
+
# Input and button for user interaction
|
149 |
+
user_input = st.text_input("You:", "")
|
150 |
+
submit_button = st.button("Ask 📨")
|
151 |
+
|
152 |
+
# Handle user input
|
153 |
+
if submit_button:
|
154 |
+
if user_input.strip() != "":
|
155 |
+
bot_response = chatbot_response(user_input)
|
156 |
+
st.markdown("### Bot:")
|
157 |
+
st.text_area("", value=bot_response, height=600)
|
158 |
+
|
159 |
+
# Feedback form
|
160 |
+
st.markdown("### Rate the response:")
|
161 |
+
st.markdown('<p>Please click on the stars to rate the response.</p>', unsafe_allow_html=True)
|
162 |
+
st.markdown('<p id="rating-value">Rating: 0</p>', unsafe_allow_html=True)
|
163 |
+
|
164 |
+
st.markdown("### Leave a comment:")
|
165 |
+
comment = st.text_area("")
|
166 |
+
|
167 |
+
# Update rating value on star click
|
168 |
+
st.markdown("""
|
169 |
+
<script>
|
170 |
+
document.querySelectorAll('.stars').forEach(star => {
|
171 |
+
star.addEventListener('click', function() {
|
172 |
+
document.getElementById('rating-value').innerText = 'Rating: ' + this.dataset.rating;
|
173 |
+
});
|
174 |
+
});
|
175 |
+
</script>
|
176 |
+
""", unsafe_allow_html=True)
|
177 |
+
|
178 |
+
# Feedback submission
|
179 |
+
if st.button("Submit Feedback"):
|
180 |
+
rating = st.text_input("Rating", value="0")
|
181 |
+
if comment.strip() and rating != "0":
|
182 |
+
save_feedback(user_input, bot_response, rating, comment)
|
183 |
+
st.success("Thank you for your feedback!")
|
184 |
+
else:
|
185 |
+
st.warning("⚠️ Please provide a comment and a rating.")
|
186 |
+
|
187 |
+
# Motivational quote at the bottom
|
188 |
st.markdown("---")
|
189 |
+
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")
|