import os import csv import streamlit as st from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEndpoint from langchain.prompts import PromptTemplate from langchain.chains import LLMChain, RetrievalQA from huggingface_hub import login # Login to Hugging Face login(token=st.secrets["HF_TOKEN"]) # Load FAISS index and ensure it only happens once if 'db' not in st.session_state: st.session_state.db = FAISS.load_local( "faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True ) # Use session state for retriever retriever = st.session_state.db.as_retriever( search_type="mmr", search_kwargs={'k': 1} ) # Define prompt template prompt_template = """ ### [INST] Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider? Answer in french only {context} Vous devez répondre aux questions en français. ### QUESTION: {question} [/INST] Answer in french only Vous devez répondre aux questions en français. """ repo_id = "mistralai/Mistral-7B-Instruct-v0.3" # Load the model only once if 'mistral_llm' not in st.session_state: st.session_state.mistral_llm = HuggingFaceEndpoint( repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"] ) # Create prompt and LLM chain prompt = PromptTemplate( input_variables=["question"], template=prompt_template, ) llm_chain = LLMChain(llm=st.session_state.mistral_llm, prompt=prompt) # Create QA chain qa = RetrievalQA.from_chain_type( llm=st.session_state.mistral_llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt}, ) # Streamlit UI setup st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖") # Define function to handle user input and display chatbot response def chatbot_response(user_input): response = qa.run(user_input) return response # Define function to save feedback to CSV def save_feedback(question, response, rating, comment): try: filename = '/tmp/feedback.csv' # Use /tmp directory for temporary storage in Spaces file_exists = os.path.isfile(filename) with open(filename, 'a', newline='', encoding='utf-8') as csvfile: fieldnames = ['question', 'response', 'rating', 'comment'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) if not file_exists: writer.writeheader() writer.writerow({'question': question, 'response': response, 'rating': rating, 'comment': comment}) st.success("Thank you for your feedback! It has been saved.") except Exception as e: st.error(f"Error saving feedback: {e}") # Use session state to store user input, bot response, rating, and comment if 'user_input' not in st.session_state: st.session_state.user_input = "" if 'bot_response' not in st.session_state: st.session_state.bot_response = "" if 'rating' not in st.session_state: st.session_state.rating = 3 # Default rating if 'comment' not in st.session_state: st.session_state.comment = "" # Create columns for logos col1, col2, col3 = st.columns([2, 3, 2]) with col1: st.image("Design 3_22.png", width=150, use_column_width=True) with col3: st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # Add CSS for styling st.markdown(""" """, unsafe_allow_html=True) # Center and color text st.markdown('

🤖 AlteriaChat 🤖

', unsafe_allow_html=True) st.markdown('

"Votre Réponse à Chaque Défi Méthodologique "

', unsafe_allow_html=True) # Input and button for user interaction st.session_state.user_input = st.text_input("You:", st.session_state.user_input) if st.button("Ask 📨"): if st.session_state.user_input.strip() != "": st.session_state.bot_response = chatbot_response(st.session_state.user_input) if st.session_state.bot_response: st.markdown("### Bot:") st.text_area("", value=st.session_state.bot_response, height=600) # Feedback Section st.markdown("### Évaluation de la réponse") st.session_state.rating = st.slider("Rating (1 to 5)", 1, 5, st.session_state.rating) st.session_state.comment = st.text_area("Your comment:", st.session_state.comment) if st.button("Submit Feedback"): if st.session_state.comment.strip() != "": save_feedback(st.session_state.user_input, st.session_state.bot_response, st.session_state.rating, st.session_state.comment) else: st.warning("⚠️ Please enter a comment.") # Motivational quote at the bottom st.markdown("---") st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")