import os import streamlit as st from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEndpoint from langchain.prompts import PromptTemplate from langchain.chains import LLMChain, RetrievalQA import gspread from oauth2client.service_account import ServiceAccountCredentials import json # Load Google service account credentials from Hugging Face secrets GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"] # Google Sheets API v4 setup scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"] service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON) creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope) client = gspread.authorize(creds) spreadsheet_id = '1Jf1k7Q71ihsxBf-XQYyucamMy14q7IjhUDlU8ZzR_Nc' # Replace with your actual spreadsheet ID sheet = client.open_by_key(spreadsheet_id).sheet1 # Function to save user feedback to Google Sheets def save_feedback(user_input, bot_response, rating, comment): feedback = [user_input, bot_response, rating, comment] sheet.append_row(feedback) # Hugging Face API login from huggingface_hub import login login(token=st.secrets["HF_TOKEN"]) # Initialize LangChain components db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True) retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1}) prompt_template = """ ### [INST] Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH. Analyse carefully the context and provide a direct answer based on the context. If the user says Bonjour or Hello, your only answer will be: Hi! comment puis-je vous aider? Answer in french only {context} Vous devez répondre aux questions en français. ### QUESTION: {question} [/INST] Answer in french only Vous devez répondre aux questions en français. """ repo_id = "mistralai/Mistral-7B-Instruct-v0.3" mistral_llm = HuggingFaceEndpoint( repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"] ) # Create prompt from prompt template prompt = PromptTemplate( input_variables=["question"], template=prompt_template, ) # Create LLM chain llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) # Create RetrievalQA chain qa = RetrievalQA.from_chain_type( llm=mistral_llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt}, ) # Streamlit interface with improved aesthetics st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖") # Define function to handle user input and display chatbot response def chatbot_response(user_input): response = qa.run(user_input) return response # Session state to hold user input and chatbot response if 'user_input' not in st.session_state: st.session_state.user_input = "" if 'bot_response' not in st.session_state: st.session_state.bot_response = "" # Create columns for logos col1, col2, col3 = st.columns([2, 3, 2]) with col1: st.image("Design 3_22.png", width=150, use_column_width=True) # Adjust image path and size as needed with col3: st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # Adjust image path and size as needed # Streamlit components st.markdown(""" """, unsafe_allow_html=True) # Use CSS classes to style the text st.markdown('

🤖 AlteriaChat 🤖

', unsafe_allow_html=True) st.markdown('

"Votre Réponse à Chaque Défi Méthodologique "

', unsafe_allow_html=True) # Input form for user interaction with st.form(key='interaction_form'): st.session_state.user_input = st.text_input("You:", key="user_input_input") ask_button = st.form_submit_button("Ask 📨") # Button to submit the question if ask_button and st.session_state.user_input.strip(): st.session_state.bot_response = chatbot_response(st.session_state.user_input) # Display the bot response if available if st.session_state.bot_response: st.markdown("### Bot:") st.text_area("", value=st.session_state.bot_response, height=600) # Separate form for feedback submission with st.form(key='feedback_form'): st.markdown("### Rate the response:") rating = st.slider("Select a rating:", min_value=1, max_value=5, value=1, key="rating") st.markdown("### Leave a comment:") comment = st.text_area("", key="comment") # Separate submit button for feedback feedback_submit_button = st.form_submit_button("Submit Feedback") if feedback_submit_button: if comment.strip(): save_feedback(st.session_state.user_input, st.session_state.bot_response, rating, comment) st.success("Thank you for your feedback!") # Clear the session state after submission st.session_state.user_input = "" st.session_state.bot_response = "" else: st.warning("Please provide a comment before submitting feedback.") st.markdown("---") st.markdown("Collaboration is the key to success. Each question finds its answer, each challenge becomes an opportunity.")