import os import csv import streamlit as st from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEndpoint from langchain.prompts import PromptTemplate from langchain.chains import LLMChain, RetrievalQA from huggingface_hub import login # Login to Hugging Face login(token=st.secrets["HF_TOKEN"]) # Load FAISS index db = FAISS.load_local( "faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True ) # Create retriever retriever = db.as_retriever( search_type="mmr", search_kwargs={'k': 1} ) # Define prompt template prompt_template = """ ### [INST] Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider? Answer in french only {context} Vous devez répondre aux questions en français. ### QUESTION: {question} [/INST] Answer in french only Vous devez répondre aux questions en français. """ repo_id = "mistralai/Mistral-7B-Instruct-v0.3" # Create LLM model mistral_llm = HuggingFaceEndpoint( repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"] ) # Create prompt and LLM chain prompt = PromptTemplate( input_variables=["question"], template=prompt_template, ) llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) # Create QA chain qa = RetrievalQA.from_chain_type( llm=mistral_llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt}, ) # Streamlit UI setup st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖") # Define function to handle user input and display chatbot response def chatbot_response(user_input): response = qa.run(user_input) return response # Define function to save feedback to CSV def save_feedback(question, response, rating, comment): filename = 'feedback.csv' file_exists = os.path.isfile(filename) with open(filename, 'a', newline='', encoding='utf-8') as csvfile: fieldnames = ['question', 'response', 'rating', 'comment'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) if not file_exists: writer.writeheader() writer.writerow({'question': question, 'response': response, 'rating': rating, 'comment': comment}) # Create columns for logos col1, col2, col3 = st.columns([2, 3, 2]) with col1: st.image("Design 3_22.png", width=150, use_column_width=True) with col3: st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # Add CSS for styling st.markdown(""" """, unsafe_allow_html=True) # Center and color text st.markdown('

🤖 AlteriaChat 🤖

', unsafe_allow_html=True) st.markdown('

"Votre Réponse à Chaque Défi Méthodologique "

', unsafe_allow_html=True) # Input and button for user interaction user_input = st.text_input("You:", "") submit_button = st.button("Ask 📨") if submit_button: if user_input.strip() != "": bot_response = chatbot_response(user_input) st.markdown("### Bot:") st.text_area("", value=bot_response, height=600) # Feedback Section st.markdown("### Évaluation de la réponse") rating = st.slider("Rating (1 to 5)", 1, 5, 3) comment = st.text_area("Your comment:", "") if st.button("Submit Feedback"): if comment.strip() != "": save_feedback(user_input, bot_response, rating, comment) st.success("Thank you for your feedback!") else: st.warning("⚠️ Please enter a comment.") else: st.warning("⚠️ Please enter a message.") # Motivational quote at the bottom st.markdown("---") st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")