# Use a pipeline as a high-level helper from transformers import pipeline import gradio as gr import os pipe = pipeline("token-classification", model="akdeniz27/bert-base-turkish-cased-ner") def merge_tokens(tokens): merged_tokens = [] for token in tokens: if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]): # If current token continues the entity of the last one, merge them last_token = merged_tokens[-1] last_token['word'] += token['word'].replace('##', '') last_token['end'] = token['end'] last_token['score'] = (last_token['score'] + token['score']) / 2 else: # Otherwise, add the token to the list merged_tokens.append(token) return merged_tokens def ner(input): output = pipe(input) merged_tokens = merge_tokens(output) return {"text": input, "entities": merged_tokens} gr.close_all() demo = gr.Interface(fn=ner, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["Benim adım Mesut ve Türk Telekomdan şikayetçiyim"]) demo.launch()