Spaces:
Running
Running
from network import U2NET | |
import os | |
from PIL import Image | |
import cv2 | |
import gdown | |
import argparse | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
from collections import OrderedDict | |
from options import opt | |
def load_checkpoint(model, checkpoint_path): | |
if not os.path.exists(checkpoint_path): | |
print("----No checkpoints at given path----") | |
return | |
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) | |
new_state_dict = OrderedDict() | |
for k, v in model_state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
model.load_state_dict(new_state_dict) | |
print("----checkpoints loaded from path: {}----".format(checkpoint_path)) | |
return model | |
def get_palette(num_cls): | |
""" Returns the color map for visualizing the segmentation mask. | |
Args: | |
num_cls: Number of classes | |
Returns: | |
The color map | |
""" | |
n = num_cls | |
palette = [0] * (n * 3) | |
for j in range(0, n): | |
lab = j | |
palette[j * 3 + 0] = 0 | |
palette[j * 3 + 1] = 0 | |
palette[j * 3 + 2] = 0 | |
i = 0 | |
while lab: | |
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) | |
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) | |
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) | |
i += 1 | |
lab >>= 3 | |
return palette | |
class Normalize_image(object): | |
"""Normalize given tensor into given mean and standard dev | |
Args: | |
mean (float): Desired mean to substract from tensors | |
std (float): Desired std to divide from tensors | |
""" | |
def __init__(self, mean, std): | |
assert isinstance(mean, (float)) | |
if isinstance(mean, float): | |
self.mean = mean | |
if isinstance(std, float): | |
self.std = std | |
self.normalize_1 = transforms.Normalize(self.mean, self.std) | |
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3) | |
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18) | |
def __call__(self, image_tensor): | |
if image_tensor.shape[0] == 1: | |
return self.normalize_1(image_tensor) | |
elif image_tensor.shape[0] == 3: | |
return self.normalize_3(image_tensor) | |
elif image_tensor.shape[0] == 18: | |
return self.normalize_18(image_tensor) | |
else: | |
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18" | |
def apply_transform(img): | |
transforms_list = [] | |
transforms_list += [transforms.ToTensor()] | |
transforms_list += [Normalize_image(0.5, 0.5)] | |
transform_rgb = transforms.Compose(transforms_list) | |
return transform_rgb(img) | |
def generate_mask(input_image, net, palette, device = 'cpu'): | |
#img = Image.open(input_image).convert('RGB') | |
img = input_image | |
img_size = img.size | |
img = img.resize((768, 768), Image.BICUBIC) | |
image_tensor = apply_transform(img) | |
image_tensor = torch.unsqueeze(image_tensor, 0) | |
alpha_out_dir = os.path.join(opt.output,'alpha') | |
cloth_seg_out_dir = os.path.join(opt.output,'cloth_seg') | |
os.makedirs(alpha_out_dir, exist_ok=True) | |
os.makedirs(cloth_seg_out_dir, exist_ok=True) | |
with torch.no_grad(): | |
output_tensor = net(image_tensor.to(device)) | |
output_tensor = F.log_softmax(output_tensor[0], dim=1) | |
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1] | |
output_tensor = torch.squeeze(output_tensor, dim=0) | |
output_arr = output_tensor.cpu().numpy() | |
classes_to_save = [] | |
# Check which classes are present in the image | |
#for cls in range(1, 4): # Exclude background class (0) | |
if np.any(output_arr == 1): | |
classes_to_save.append(1) | |
# Save alpha masks | |
for cls in classes_to_save: | |
alpha_mask = (output_arr == cls).astype(np.uint8) * 255 | |
alpha_mask = alpha_mask[0] # Selecting the first channel to make it 2D | |
alpha_mask_img = Image.fromarray(alpha_mask, mode='L') | |
alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC) | |
alpha_mask_img.save(os.path.join(alpha_out_dir, f'{cls}.png')) | |
# Save final cloth segmentations | |
cloth_seg = Image.fromarray(output_arr[0].astype(np.uint8), mode='P') | |
cloth_seg.putpalette(palette) | |
cloth_seg = cloth_seg.resize(img_size, Image.BICUBIC) | |
cloth_seg.save(os.path.join(cloth_seg_out_dir, 'final_seg.png')) | |
return cloth_seg | |
def check_or_download_model(file_path): | |
if not os.path.exists(file_path): | |
os.makedirs(os.path.dirname(file_path), exist_ok=True) | |
url = "https://drive.google.com/uc?id=11xTBALOeUkyuaK3l60CpkYHLTmv7k3dY" | |
gdown.download(url, file_path, quiet=False) | |
print("Model downloaded successfully.") | |
else: | |
print("Model already exists.") | |
def load_seg_model(checkpoint_path, device='cpu'): | |
net = U2NET(in_ch=3, out_ch=4) | |
check_or_download_model(checkpoint_path) | |
net = load_checkpoint(net, checkpoint_path) | |
net = net.to(device) | |
net = net.eval() | |
return net | |
def main(args): | |
device = 'cuda:0' if args.cuda else 'cpu' | |
# Create an instance of your model | |
model = load_seg_model(args.checkpoint_path, device=device) | |
palette = get_palette(1) | |
img = Image.open(args.image).convert('RGB') | |
cloth_seg = generate_mask(img, net=model, palette=palette, device=device) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Help to set arguments for Cloth Segmentation.') | |
parser.add_argument('--image', type=str, help='Path to the input image') | |
parser.add_argument('--cuda', action='store_true', help='Enable CUDA (default: False)') | |
parser.add_argument('--checkpoint_path', type=str, default='model/cloth_segm.pth', help='Path to the checkpoint file') | |
args = parser.parse_args() | |
main(args) |