Spaces:
Running
Running
wildoctopus
commited on
Commit
•
896437a
1
Parent(s):
a098689
Upload 5 files
Browse files- app.py +39 -0
- network.py +560 -0
- options.py +12 -0
- process.py +190 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from process import load_seg_model, get_palette, generate_mask
|
5 |
+
|
6 |
+
|
7 |
+
device = 'cpu'
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def initialize_and_load_models():
|
12 |
+
|
13 |
+
checkpoint_path = 'model/cloth_segm.pth'
|
14 |
+
net = load_seg_model(checkpoint_path, device=device)
|
15 |
+
|
16 |
+
return net
|
17 |
+
|
18 |
+
net = initialize_and_load_models()
|
19 |
+
palette = get_palette(4)
|
20 |
+
|
21 |
+
|
22 |
+
def run(img):
|
23 |
+
|
24 |
+
cloth_seg = generate_mask(img, net=net, palette=palette, device=device)
|
25 |
+
return cloth_seg
|
26 |
+
|
27 |
+
# Define input and output interfaces
|
28 |
+
input_image = gr.inputs.Image(label="Input Image", type="pil")
|
29 |
+
|
30 |
+
# Define the Gradio interface
|
31 |
+
cloth_seg_image = gr.outputs.Image(label="Cloth Segmentation", type="pil")
|
32 |
+
|
33 |
+
title = "Demo for Cloth Segmentation"
|
34 |
+
description = "An app for Cloth Segmentation"
|
35 |
+
inputs = [input_image]
|
36 |
+
outputs = [cloth_seg_image]
|
37 |
+
|
38 |
+
|
39 |
+
gr.Interface(fn=run, inputs=inputs, outputs=outputs, title=title, description=description).launch()
|
network.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class REBNCONV(nn.Module):
|
7 |
+
def __init__(self, in_ch=3, out_ch=3, dirate=1):
|
8 |
+
super(REBNCONV, self).__init__()
|
9 |
+
|
10 |
+
self.conv_s1 = nn.Conv2d(
|
11 |
+
in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate
|
12 |
+
)
|
13 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
14 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
|
18 |
+
hx = x
|
19 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
20 |
+
|
21 |
+
return xout
|
22 |
+
|
23 |
+
|
24 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
25 |
+
def _upsample_like(src, tar):
|
26 |
+
|
27 |
+
src = F.upsample(src, size=tar.shape[2:], mode="bilinear")
|
28 |
+
|
29 |
+
return src
|
30 |
+
|
31 |
+
|
32 |
+
### RSU-7 ###
|
33 |
+
class RSU7(nn.Module): # UNet07DRES(nn.Module):
|
34 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
35 |
+
super(RSU7, self).__init__()
|
36 |
+
|
37 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
38 |
+
|
39 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
40 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
41 |
+
|
42 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
43 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
44 |
+
|
45 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
46 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
47 |
+
|
48 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
49 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
50 |
+
|
51 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
52 |
+
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
53 |
+
|
54 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
55 |
+
|
56 |
+
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
57 |
+
|
58 |
+
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
59 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
60 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
61 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
62 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
63 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
|
67 |
+
hx = x
|
68 |
+
hxin = self.rebnconvin(hx)
|
69 |
+
|
70 |
+
hx1 = self.rebnconv1(hxin)
|
71 |
+
hx = self.pool1(hx1)
|
72 |
+
|
73 |
+
hx2 = self.rebnconv2(hx)
|
74 |
+
hx = self.pool2(hx2)
|
75 |
+
|
76 |
+
hx3 = self.rebnconv3(hx)
|
77 |
+
hx = self.pool3(hx3)
|
78 |
+
|
79 |
+
hx4 = self.rebnconv4(hx)
|
80 |
+
hx = self.pool4(hx4)
|
81 |
+
|
82 |
+
hx5 = self.rebnconv5(hx)
|
83 |
+
hx = self.pool5(hx5)
|
84 |
+
|
85 |
+
hx6 = self.rebnconv6(hx)
|
86 |
+
|
87 |
+
hx7 = self.rebnconv7(hx6)
|
88 |
+
|
89 |
+
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
|
90 |
+
hx6dup = _upsample_like(hx6d, hx5)
|
91 |
+
|
92 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
|
93 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
94 |
+
|
95 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
96 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
97 |
+
|
98 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
99 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
100 |
+
|
101 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
102 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
103 |
+
|
104 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
105 |
+
|
106 |
+
"""
|
107 |
+
del hx1, hx2, hx3, hx4, hx5, hx6, hx7
|
108 |
+
del hx6d, hx5d, hx3d, hx2d
|
109 |
+
del hx2dup, hx3dup, hx4dup, hx5dup, hx6dup
|
110 |
+
"""
|
111 |
+
|
112 |
+
return hx1d + hxin
|
113 |
+
|
114 |
+
|
115 |
+
### RSU-6 ###
|
116 |
+
class RSU6(nn.Module): # UNet06DRES(nn.Module):
|
117 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
118 |
+
super(RSU6, self).__init__()
|
119 |
+
|
120 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
121 |
+
|
122 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
123 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
124 |
+
|
125 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
126 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
127 |
+
|
128 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
129 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
130 |
+
|
131 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
132 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
133 |
+
|
134 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
135 |
+
|
136 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
137 |
+
|
138 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
139 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
140 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
141 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
142 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
143 |
+
|
144 |
+
def forward(self, x):
|
145 |
+
|
146 |
+
hx = x
|
147 |
+
|
148 |
+
hxin = self.rebnconvin(hx)
|
149 |
+
|
150 |
+
hx1 = self.rebnconv1(hxin)
|
151 |
+
hx = self.pool1(hx1)
|
152 |
+
|
153 |
+
hx2 = self.rebnconv2(hx)
|
154 |
+
hx = self.pool2(hx2)
|
155 |
+
|
156 |
+
hx3 = self.rebnconv3(hx)
|
157 |
+
hx = self.pool3(hx3)
|
158 |
+
|
159 |
+
hx4 = self.rebnconv4(hx)
|
160 |
+
hx = self.pool4(hx4)
|
161 |
+
|
162 |
+
hx5 = self.rebnconv5(hx)
|
163 |
+
|
164 |
+
hx6 = self.rebnconv6(hx5)
|
165 |
+
|
166 |
+
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
|
167 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
168 |
+
|
169 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
170 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
171 |
+
|
172 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
173 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
174 |
+
|
175 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
176 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
177 |
+
|
178 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
179 |
+
|
180 |
+
"""
|
181 |
+
del hx1, hx2, hx3, hx4, hx5, hx6
|
182 |
+
del hx5d, hx4d, hx3d, hx2d
|
183 |
+
del hx2dup, hx3dup, hx4dup, hx5dup
|
184 |
+
"""
|
185 |
+
|
186 |
+
return hx1d + hxin
|
187 |
+
|
188 |
+
|
189 |
+
### RSU-5 ###
|
190 |
+
class RSU5(nn.Module): # UNet05DRES(nn.Module):
|
191 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
192 |
+
super(RSU5, self).__init__()
|
193 |
+
|
194 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
195 |
+
|
196 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
197 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
198 |
+
|
199 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
200 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
201 |
+
|
202 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
203 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
204 |
+
|
205 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
206 |
+
|
207 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
208 |
+
|
209 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
210 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
211 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
212 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
213 |
+
|
214 |
+
def forward(self, x):
|
215 |
+
|
216 |
+
hx = x
|
217 |
+
|
218 |
+
hxin = self.rebnconvin(hx)
|
219 |
+
|
220 |
+
hx1 = self.rebnconv1(hxin)
|
221 |
+
hx = self.pool1(hx1)
|
222 |
+
|
223 |
+
hx2 = self.rebnconv2(hx)
|
224 |
+
hx = self.pool2(hx2)
|
225 |
+
|
226 |
+
hx3 = self.rebnconv3(hx)
|
227 |
+
hx = self.pool3(hx3)
|
228 |
+
|
229 |
+
hx4 = self.rebnconv4(hx)
|
230 |
+
|
231 |
+
hx5 = self.rebnconv5(hx4)
|
232 |
+
|
233 |
+
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
|
234 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
235 |
+
|
236 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
237 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
238 |
+
|
239 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
240 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
241 |
+
|
242 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
243 |
+
|
244 |
+
"""
|
245 |
+
del hx1, hx2, hx3, hx4, hx5
|
246 |
+
del hx4d, hx3d, hx2d
|
247 |
+
del hx2dup, hx3dup, hx4dup
|
248 |
+
"""
|
249 |
+
|
250 |
+
return hx1d + hxin
|
251 |
+
|
252 |
+
|
253 |
+
### RSU-4 ###
|
254 |
+
class RSU4(nn.Module): # UNet04DRES(nn.Module):
|
255 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
256 |
+
super(RSU4, self).__init__()
|
257 |
+
|
258 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
259 |
+
|
260 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
261 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
262 |
+
|
263 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
264 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
265 |
+
|
266 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
267 |
+
|
268 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
269 |
+
|
270 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
271 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
272 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
273 |
+
|
274 |
+
def forward(self, x):
|
275 |
+
|
276 |
+
hx = x
|
277 |
+
|
278 |
+
hxin = self.rebnconvin(hx)
|
279 |
+
|
280 |
+
hx1 = self.rebnconv1(hxin)
|
281 |
+
hx = self.pool1(hx1)
|
282 |
+
|
283 |
+
hx2 = self.rebnconv2(hx)
|
284 |
+
hx = self.pool2(hx2)
|
285 |
+
|
286 |
+
hx3 = self.rebnconv3(hx)
|
287 |
+
|
288 |
+
hx4 = self.rebnconv4(hx3)
|
289 |
+
|
290 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
291 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
292 |
+
|
293 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
294 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
295 |
+
|
296 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
297 |
+
|
298 |
+
"""
|
299 |
+
del hx1, hx2, hx3, hx4
|
300 |
+
del hx3d, hx2d
|
301 |
+
del hx2dup, hx3dup
|
302 |
+
"""
|
303 |
+
|
304 |
+
return hx1d + hxin
|
305 |
+
|
306 |
+
|
307 |
+
### RSU-4F ###
|
308 |
+
class RSU4F(nn.Module): # UNet04FRES(nn.Module):
|
309 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
310 |
+
super(RSU4F, self).__init__()
|
311 |
+
|
312 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
313 |
+
|
314 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
315 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
316 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
|
317 |
+
|
318 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
|
319 |
+
|
320 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
|
321 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
|
322 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
323 |
+
|
324 |
+
def forward(self, x):
|
325 |
+
|
326 |
+
hx = x
|
327 |
+
|
328 |
+
hxin = self.rebnconvin(hx)
|
329 |
+
|
330 |
+
hx1 = self.rebnconv1(hxin)
|
331 |
+
hx2 = self.rebnconv2(hx1)
|
332 |
+
hx3 = self.rebnconv3(hx2)
|
333 |
+
|
334 |
+
hx4 = self.rebnconv4(hx3)
|
335 |
+
|
336 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
337 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
|
338 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
|
339 |
+
|
340 |
+
"""
|
341 |
+
del hx1, hx2, hx3, hx4
|
342 |
+
del hx3d, hx2d
|
343 |
+
"""
|
344 |
+
|
345 |
+
return hx1d + hxin
|
346 |
+
|
347 |
+
|
348 |
+
##### U^2-Net ####
|
349 |
+
class U2NET(nn.Module):
|
350 |
+
def __init__(self, in_ch=3, out_ch=1):
|
351 |
+
super(U2NET, self).__init__()
|
352 |
+
|
353 |
+
self.stage1 = RSU7(in_ch, 32, 64)
|
354 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
355 |
+
|
356 |
+
self.stage2 = RSU6(64, 32, 128)
|
357 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
358 |
+
|
359 |
+
self.stage3 = RSU5(128, 64, 256)
|
360 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
361 |
+
|
362 |
+
self.stage4 = RSU4(256, 128, 512)
|
363 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
364 |
+
|
365 |
+
self.stage5 = RSU4F(512, 256, 512)
|
366 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
367 |
+
|
368 |
+
self.stage6 = RSU4F(512, 256, 512)
|
369 |
+
|
370 |
+
# decoder
|
371 |
+
self.stage5d = RSU4F(1024, 256, 512)
|
372 |
+
self.stage4d = RSU4(1024, 128, 256)
|
373 |
+
self.stage3d = RSU5(512, 64, 128)
|
374 |
+
self.stage2d = RSU6(256, 32, 64)
|
375 |
+
self.stage1d = RSU7(128, 16, 64)
|
376 |
+
|
377 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
378 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
379 |
+
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
|
380 |
+
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
|
381 |
+
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
|
382 |
+
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)
|
383 |
+
|
384 |
+
self.outconv = nn.Conv2d(6 * out_ch, out_ch, 1)
|
385 |
+
|
386 |
+
def forward(self, x):
|
387 |
+
|
388 |
+
hx = x
|
389 |
+
|
390 |
+
# stage 1
|
391 |
+
hx1 = self.stage1(hx)
|
392 |
+
hx = self.pool12(hx1)
|
393 |
+
|
394 |
+
# stage 2
|
395 |
+
hx2 = self.stage2(hx)
|
396 |
+
hx = self.pool23(hx2)
|
397 |
+
|
398 |
+
# stage 3
|
399 |
+
hx3 = self.stage3(hx)
|
400 |
+
hx = self.pool34(hx3)
|
401 |
+
|
402 |
+
# stage 4
|
403 |
+
hx4 = self.stage4(hx)
|
404 |
+
hx = self.pool45(hx4)
|
405 |
+
|
406 |
+
# stage 5
|
407 |
+
hx5 = self.stage5(hx)
|
408 |
+
hx = self.pool56(hx5)
|
409 |
+
|
410 |
+
# stage 6
|
411 |
+
hx6 = self.stage6(hx)
|
412 |
+
hx6up = _upsample_like(hx6, hx5)
|
413 |
+
|
414 |
+
# -------------------- decoder --------------------
|
415 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
416 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
417 |
+
|
418 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
419 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
420 |
+
|
421 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
422 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
423 |
+
|
424 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
425 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
426 |
+
|
427 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
428 |
+
|
429 |
+
# side output
|
430 |
+
d1 = self.side1(hx1d)
|
431 |
+
|
432 |
+
d2 = self.side2(hx2d)
|
433 |
+
d2 = _upsample_like(d2, d1)
|
434 |
+
|
435 |
+
d3 = self.side3(hx3d)
|
436 |
+
d3 = _upsample_like(d3, d1)
|
437 |
+
|
438 |
+
d4 = self.side4(hx4d)
|
439 |
+
d4 = _upsample_like(d4, d1)
|
440 |
+
|
441 |
+
d5 = self.side5(hx5d)
|
442 |
+
d5 = _upsample_like(d5, d1)
|
443 |
+
|
444 |
+
d6 = self.side6(hx6)
|
445 |
+
d6 = _upsample_like(d6, d1)
|
446 |
+
|
447 |
+
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
448 |
+
|
449 |
+
"""
|
450 |
+
del hx1, hx2, hx3, hx4, hx5, hx6
|
451 |
+
del hx5d, hx4d, hx3d, hx2d, hx1d
|
452 |
+
del hx6up, hx5dup, hx4dup, hx3dup, hx2dup
|
453 |
+
"""
|
454 |
+
|
455 |
+
return d0, d1, d2, d3, d4, d5, d6
|
456 |
+
|
457 |
+
|
458 |
+
### U^2-Net small ###
|
459 |
+
class U2NETP(nn.Module):
|
460 |
+
def __init__(self, in_ch=3, out_ch=1):
|
461 |
+
super(U2NETP, self).__init__()
|
462 |
+
|
463 |
+
self.stage1 = RSU7(in_ch, 16, 64)
|
464 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
465 |
+
|
466 |
+
self.stage2 = RSU6(64, 16, 64)
|
467 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
468 |
+
|
469 |
+
self.stage3 = RSU5(64, 16, 64)
|
470 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
471 |
+
|
472 |
+
self.stage4 = RSU4(64, 16, 64)
|
473 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
474 |
+
|
475 |
+
self.stage5 = RSU4F(64, 16, 64)
|
476 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
477 |
+
|
478 |
+
self.stage6 = RSU4F(64, 16, 64)
|
479 |
+
|
480 |
+
# decoder
|
481 |
+
self.stage5d = RSU4F(128, 16, 64)
|
482 |
+
self.stage4d = RSU4(128, 16, 64)
|
483 |
+
self.stage3d = RSU5(128, 16, 64)
|
484 |
+
self.stage2d = RSU6(128, 16, 64)
|
485 |
+
self.stage1d = RSU7(128, 16, 64)
|
486 |
+
|
487 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
488 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
489 |
+
self.side3 = nn.Conv2d(64, out_ch, 3, padding=1)
|
490 |
+
self.side4 = nn.Conv2d(64, out_ch, 3, padding=1)
|
491 |
+
self.side5 = nn.Conv2d(64, out_ch, 3, padding=1)
|
492 |
+
self.side6 = nn.Conv2d(64, out_ch, 3, padding=1)
|
493 |
+
|
494 |
+
self.outconv = nn.Conv2d(6 * out_ch, out_ch, 1)
|
495 |
+
|
496 |
+
def forward(self, x):
|
497 |
+
|
498 |
+
hx = x
|
499 |
+
|
500 |
+
# stage 1
|
501 |
+
hx1 = self.stage1(hx)
|
502 |
+
hx = self.pool12(hx1)
|
503 |
+
|
504 |
+
# stage 2
|
505 |
+
hx2 = self.stage2(hx)
|
506 |
+
hx = self.pool23(hx2)
|
507 |
+
|
508 |
+
# stage 3
|
509 |
+
hx3 = self.stage3(hx)
|
510 |
+
hx = self.pool34(hx3)
|
511 |
+
|
512 |
+
# stage 4
|
513 |
+
hx4 = self.stage4(hx)
|
514 |
+
hx = self.pool45(hx4)
|
515 |
+
|
516 |
+
# stage 5
|
517 |
+
hx5 = self.stage5(hx)
|
518 |
+
hx = self.pool56(hx5)
|
519 |
+
|
520 |
+
# stage 6
|
521 |
+
hx6 = self.stage6(hx)
|
522 |
+
hx6up = _upsample_like(hx6, hx5)
|
523 |
+
|
524 |
+
# decoder
|
525 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
526 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
527 |
+
|
528 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
529 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
530 |
+
|
531 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
532 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
533 |
+
|
534 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
535 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
536 |
+
|
537 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
538 |
+
|
539 |
+
# side output
|
540 |
+
d1 = self.side1(hx1d)
|
541 |
+
|
542 |
+
d2 = self.side2(hx2d)
|
543 |
+
d2 = _upsample_like(d2, d1)
|
544 |
+
|
545 |
+
d3 = self.side3(hx3d)
|
546 |
+
d3 = _upsample_like(d3, d1)
|
547 |
+
|
548 |
+
d4 = self.side4(hx4d)
|
549 |
+
d4 = _upsample_like(d4, d1)
|
550 |
+
|
551 |
+
d5 = self.side5(hx5d)
|
552 |
+
d5 = _upsample_like(d5, d1)
|
553 |
+
|
554 |
+
d6 = self.side6(hx6)
|
555 |
+
d6 = _upsample_like(d6, d1)
|
556 |
+
|
557 |
+
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
558 |
+
|
559 |
+
|
560 |
+
return d0, d1, d2, d3, d4, d5, d6
|
options.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
class parser(object):
|
6 |
+
def __init__(self):
|
7 |
+
|
8 |
+
self.output_folder = "./outputs" # output image folder path
|
9 |
+
self.logs_dir = './logs'
|
10 |
+
self.device = 'cuda:0'
|
11 |
+
|
12 |
+
opt = parser()
|
process.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from network import U2NET
|
2 |
+
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
import gdown
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torchvision.transforms as transforms
|
13 |
+
|
14 |
+
from collections import OrderedDict
|
15 |
+
from options import opt
|
16 |
+
|
17 |
+
|
18 |
+
def load_checkpoint(model, checkpoint_path):
|
19 |
+
if not os.path.exists(checkpoint_path):
|
20 |
+
print("----No checkpoints at given path----")
|
21 |
+
return
|
22 |
+
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
23 |
+
new_state_dict = OrderedDict()
|
24 |
+
for k, v in model_state_dict.items():
|
25 |
+
name = k[7:] # remove `module.`
|
26 |
+
new_state_dict[name] = v
|
27 |
+
|
28 |
+
model.load_state_dict(new_state_dict)
|
29 |
+
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
|
30 |
+
return model
|
31 |
+
|
32 |
+
|
33 |
+
def get_palette(num_cls):
|
34 |
+
""" Returns the color map for visualizing the segmentation mask.
|
35 |
+
Args:
|
36 |
+
num_cls: Number of classes
|
37 |
+
Returns:
|
38 |
+
The color map
|
39 |
+
"""
|
40 |
+
n = num_cls
|
41 |
+
palette = [0] * (n * 3)
|
42 |
+
for j in range(0, n):
|
43 |
+
lab = j
|
44 |
+
palette[j * 3 + 0] = 0
|
45 |
+
palette[j * 3 + 1] = 0
|
46 |
+
palette[j * 3 + 2] = 0
|
47 |
+
i = 0
|
48 |
+
while lab:
|
49 |
+
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
|
50 |
+
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
|
51 |
+
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
|
52 |
+
i += 1
|
53 |
+
lab >>= 3
|
54 |
+
return palette
|
55 |
+
|
56 |
+
|
57 |
+
class Normalize_image(object):
|
58 |
+
"""Normalize given tensor into given mean and standard dev
|
59 |
+
|
60 |
+
Args:
|
61 |
+
mean (float): Desired mean to substract from tensors
|
62 |
+
std (float): Desired std to divide from tensors
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(self, mean, std):
|
66 |
+
assert isinstance(mean, (float))
|
67 |
+
if isinstance(mean, float):
|
68 |
+
self.mean = mean
|
69 |
+
|
70 |
+
if isinstance(std, float):
|
71 |
+
self.std = std
|
72 |
+
|
73 |
+
self.normalize_1 = transforms.Normalize(self.mean, self.std)
|
74 |
+
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3)
|
75 |
+
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18)
|
76 |
+
|
77 |
+
def __call__(self, image_tensor):
|
78 |
+
if image_tensor.shape[0] == 1:
|
79 |
+
return self.normalize_1(image_tensor)
|
80 |
+
|
81 |
+
elif image_tensor.shape[0] == 3:
|
82 |
+
return self.normalize_3(image_tensor)
|
83 |
+
|
84 |
+
elif image_tensor.shape[0] == 18:
|
85 |
+
return self.normalize_18(image_tensor)
|
86 |
+
|
87 |
+
else:
|
88 |
+
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
def apply_transform(img):
|
94 |
+
transforms_list = []
|
95 |
+
transforms_list += [transforms.ToTensor()]
|
96 |
+
transforms_list += [Normalize_image(0.5, 0.5)]
|
97 |
+
transform_rgb = transforms.Compose(transforms_list)
|
98 |
+
return transform_rgb(img)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
def generate_mask(input_image, net, palette, device = 'cpu'):
|
103 |
+
|
104 |
+
#img = Image.open(input_image).convert('RGB')
|
105 |
+
img = input_image
|
106 |
+
img_size = img.size
|
107 |
+
img = img.resize((768, 768), Image.BICUBIC)
|
108 |
+
image_tensor = apply_transform(img)
|
109 |
+
image_tensor = torch.unsqueeze(image_tensor, 0)
|
110 |
+
|
111 |
+
alpha_out_dir = os.path.join(opt.output,'alpha')
|
112 |
+
cloth_seg_out_dir = os.path.join(opt.output,'cloth_seg')
|
113 |
+
|
114 |
+
os.makedirs(alpha_out_dir, exist_ok=True)
|
115 |
+
os.makedirs(cloth_seg_out_dir, exist_ok=True)
|
116 |
+
|
117 |
+
with torch.no_grad():
|
118 |
+
output_tensor = net(image_tensor.to(device))
|
119 |
+
output_tensor = F.log_softmax(output_tensor[0], dim=1)
|
120 |
+
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
|
121 |
+
output_tensor = torch.squeeze(output_tensor, dim=0)
|
122 |
+
output_arr = output_tensor.cpu().numpy()
|
123 |
+
|
124 |
+
classes_to_save = []
|
125 |
+
|
126 |
+
# Check which classes are present in the image
|
127 |
+
for cls in range(1, 4): # Exclude background class (0)
|
128 |
+
if np.any(output_arr == cls):
|
129 |
+
classes_to_save.append(cls)
|
130 |
+
|
131 |
+
# Save alpha masks
|
132 |
+
for cls in classes_to_save:
|
133 |
+
alpha_mask = (output_arr == cls).astype(np.uint8) * 255
|
134 |
+
alpha_mask = alpha_mask[0] # Selecting the first channel to make it 2D
|
135 |
+
alpha_mask_img = Image.fromarray(alpha_mask, mode='L')
|
136 |
+
alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC)
|
137 |
+
alpha_mask_img.save(os.path.join(alpha_out_dir, f'{cls}.png'))
|
138 |
+
|
139 |
+
# Save final cloth segmentations
|
140 |
+
cloth_seg = Image.fromarray(output_arr[0].astype(np.uint8), mode='P')
|
141 |
+
cloth_seg.putpalette(palette)
|
142 |
+
cloth_seg = cloth_seg.resize(img_size, Image.BICUBIC)
|
143 |
+
cloth_seg.save(os.path.join(cloth_seg_out_dir, 'final_seg.png'))
|
144 |
+
return cloth_seg
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
def check_or_download_model(file_path):
|
149 |
+
if not os.path.exists(file_path):
|
150 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
151 |
+
url = "https://drive.google.com/uc?id=11xTBALOeUkyuaK3l60CpkYHLTmv7k3dY"
|
152 |
+
gdown.download(url, file_path, quiet=False)
|
153 |
+
print("Model downloaded successfully.")
|
154 |
+
else:
|
155 |
+
print("Model already exists.")
|
156 |
+
|
157 |
+
|
158 |
+
def load_seg_model(checkpoint_path, device='cpu'):
|
159 |
+
net = U2NET(in_ch=3, out_ch=4)
|
160 |
+
check_or_download_model(checkpoint_path)
|
161 |
+
net = load_checkpoint(net, checkpoint_path)
|
162 |
+
net = net.to(device)
|
163 |
+
net = net.eval()
|
164 |
+
|
165 |
+
return net
|
166 |
+
|
167 |
+
|
168 |
+
def main(args):
|
169 |
+
|
170 |
+
device = 'cuda:0' if args.cuda else 'cpu'
|
171 |
+
|
172 |
+
# Create an instance of your model
|
173 |
+
model = load_seg_model(args.checkpoint_path, device=device)
|
174 |
+
|
175 |
+
palette = get_palette(4)
|
176 |
+
|
177 |
+
img = Image.open(args.image).convert('RGB')
|
178 |
+
|
179 |
+
cloth_seg = generate_mask(img, net=model, palette=palette, device=device)
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
if __name__ == '__main__':
|
184 |
+
parser = argparse.ArgumentParser(description='Help to set arguments for Cloth Segmentation.')
|
185 |
+
parser.add_argument('--image', type=str, help='Path to the input image')
|
186 |
+
parser.add_argument('--cuda', action='store_true', help='Enable CUDA (default: False)')
|
187 |
+
parser.add_argument('--checkpoint_path', type=str, default='model/cloth_segm.pth', help='Path to the checkpoint file')
|
188 |
+
args = parser.parse_args()
|
189 |
+
|
190 |
+
main(args)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
gradio
|
4 |
+
gdown
|
5 |
+
Pillow
|
6 |
+
opencv-python
|
7 |
+
numpy
|