Spaces:
Runtime error
Runtime error
from presidio_anonymizer import AnonymizerEngine | |
from presidio_analyzer import AnalyzerEngine | |
from presidio_anonymizer.entities import RecognizerResult, OperatorConfig | |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline | |
import torch | |
import re | |
import gradio as gr | |
# Initialize the engine: | |
analyzer = AnalyzerEngine() | |
anonymizer = AnonymizerEngine() | |
# Create the NER pipeline | |
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER-uncased") | |
tokenizer.add_tokens('<person>') | |
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER-uncased") | |
pipe = pipeline(model=model, tokenizer=tokenizer, task='ner') | |
# https://microsoft.github.io/presidio/supported_entities/ | |
ENT_TYPES = [ | |
# 'PERSON', | |
'CREDIT_CARD', | |
'EMAIL_ADDRESS', | |
'IP_ADDRESS', | |
'PHONE_NUMBER' | |
] | |
def mask_names_hf(text): | |
# Tokenize inputs | |
inputs = tokenizer(text, return_tensors='pt', truncation=True) | |
tokens = inputs.tokens() | |
# Make inferences | |
outputs = model(**inputs).logits | |
predictions = torch.argmax(outputs, dim=2) | |
# Replace tokens that are people with <PERSON> | |
words = [] | |
for token, prediction in zip(tokens, predictions[0].numpy()): | |
prediction = model.config.id2label[prediction] | |
if prediction not in ('I-PER', 'B-PER'): | |
words.append(token) | |
elif prediction == 'B-PER': | |
if words[-1] != '<PERSON>': | |
words.append('<PERSON>') | |
else: | |
pass | |
# Convert those tokens to a string | |
return tokenizer.convert_tokens_to_string(words[1:-1]) | |
# def mask_names_hf(text): | |
# outputs = pipe(text) | |
# tokens = [] | |
# for token in outputs: | |
# if 'PER' in token['entity']: | |
# if tokens[-1] != '<PERSON>': | |
# tokens.append('<PERSON>') | |
# else: | |
# tokens.append(token['word']) | |
# t = tokenizer.convert_tokens_to_string(tokens) | |
# return t | |
def anonymize(text, min_len=3): | |
# Find and replace other stuff (Presidio NER) | |
ents = analyzer.analyze(text, language='en', entities=ENT_TYPES) | |
results = anonymizer.anonymize(text, analyzer_results=ents) | |
t = results.text | |
# t = copy(text) | |
# Find and replace names (HF NER) | |
t = mask_names_hf(t) | |
pats = re.findall('<.+?>', t) | |
for p in pats: | |
t = t.replace(p, p.upper().replace(' ', '')) | |
t = t.replace('<PERSON><PERSON>', '<PERSON>') | |
return t | |
title = "PII Masking" | |
description = """ | |
In many applications, personally identifiable information (PII) is easy to remove from databases since a column may contain specific PII. | |
Common techniques like hashing also allow the identity of these values to be preserved without exposing the contents of the value. | |
However, it can be less straightforward to remove from unstructured text data, where PII may or may not be present. | |
Further, text may contain multiple types of PII that present an increased risk of exposure when coupled together. | |
For example, a name and IP address together may be used to pinpoint a specific person's location. | |
Hashing the data outright is not an option since consumers of these data often prefer to work with the raw text data. | |
Thus, preserving privacy in raw text data remains a challenge. | |
This space applies both rule-based and ML-based approaches to remove names, phone numbers, emails, and IP addresses from raw text. | |
This app accepts raw text and returns the same text, but with PII replaced with special tokens that preserve some characteristics of the masked entities without revealing their contents. | |
""" | |
gr.Interface( | |
anonymize, | |
inputs='text', | |
outputs='text', | |
title=title, | |
description=description, | |
examples=[ | |
"Hi, my name is Mike and my phone number is 1-234-567-9000", | |
"Hi, my name is Mike and my email address is my_name@my_domain.com", | |
"Hi, my name is Mike and my IP address is 127.0.0.1", | |
# "Hi, my name is Mike and my credit card is 1200 3859 8281 0593" | |
] | |
).launch(debug=True) | |