Spaces:
Sleeping
Sleeping
adding files
Browse files- app.py +27 -0
- genre_types_encoded.json +1 -0
- movie_gnere-classifier-quantized.onnx +3 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import onnxruntime as rt
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import torch, json
|
5 |
+
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
|
7 |
+
|
8 |
+
with open("genre_types_encoded.json", "r") as fp:
|
9 |
+
encode_genre_types = json.load(fp)
|
10 |
+
|
11 |
+
genres = list(encode_genre_types.keys())
|
12 |
+
|
13 |
+
inf_session = rt.InferenceSession('movie_gnere-classifier-quantized.onnx')
|
14 |
+
input_name = inf_session.get_inputs()[0].name
|
15 |
+
output_name = inf_session.get_outputs()[0].name
|
16 |
+
|
17 |
+
def classify_book_genre(Description):
|
18 |
+
input_ids = tokenizer(Description)['input_ids'][:512]
|
19 |
+
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
|
20 |
+
logits = torch.FloatTensor(logits)
|
21 |
+
probs = torch.sigmoid(logits)[0]
|
22 |
+
return dict(zip(genres, map(float, probs)))
|
23 |
+
|
24 |
+
label = gr.outputs.Label(num_top_classes=5)
|
25 |
+
iface = gr.Interface(fn=classify_book_genre, inputs="text", outputs=label)
|
26 |
+
iface.launch(inline=False)
|
27 |
+
|
genre_types_encoded.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"Action": 0, "Adventure": 1, "Drama": 2, "Comedy": 3, "Thriller": 4, "Mystery": 5, "Family": 6, "Fantasy": 7, "Romance": 8, "Biography": 9, "History": 10, "Sport": 11, "Crime": 12, "Musical": 13, "Sci-fi": 14, "Horror": 15, "Animation": 16, "Music": 17, "War": 18, "Documentary": 19, "Western": 20}
|
movie_gnere-classifier-quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dfa4f9cce8138fee42090760ec87fdb0e7139b23574fcd51e5b2e092cae5d66
|
3 |
+
size 82573551
|
requirements.txt
ADDED
Binary file (148 Bytes). View file
|
|