Spaces:
Runtime error
Runtime error
File size: 1,687 Bytes
3671cba ee259c3 3671cba ee259c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
from fastapi import FastAPI
import pickle
import uvicorn
import pandas as pd
app = FastAPI()
# @app.get("/")
# def read_root():
# return {"Hello": "World!"}
# Function to load pickle file
def load_pickle(filename):
with open(filename, 'rb') as file:
data = pickle.load(file)
return data
# Load pickle file
ml_components = load_pickle('ml_sepsis.pkl')
# Components in the pickle file
ml_model = ml_components['model']
pipeline_processing = ml_components['pipeline']
@app.get('/Predict_Sepsis')
async def predict(Plasma_glucose: int, Blood_Work_Result_1: int,
Blood_Pressure: int, Blood_Work_Result_2: int,
Blood_Work_Result_3: int, Body_mass_index: float,
Blood_Work_Result_4: float,Age: int, Insurance:float):
data = pd.DataFrame({'Plasma glucose': [Plasma_glucose], 'Blood Work Result-1': [Blood_Work_Result_1],
'Blood Pressure': [Blood_Pressure], 'Blood Work Result-2': [Blood_Work_Result_2],
'Blood Work Result-3': [Blood_Work_Result_3], 'Body mass index': [Body_mass_index],
'Blood Work Result-4': [Blood_Work_Result_4], 'Age': [Age], 'Insurance':[Insurance]})
data_prepared = pipeline_processing.transform(data)
model_output = ml_model.predict(data_prepared).tolist()
prediction = make_prediction(model_output)
return prediction
def make_prediction(data_prepared):
output_pred = data_prepared
if output_pred == 0:
output_pred = "Sepsis status is Negative"
else:
output_pred = "Sepsis status is Positive"
return output_pred |