File size: 7,298 Bytes
360d274
 
 
 
 
 
 
 
17e6751
44a51c4
360d274
f0022eb
 
 
 
 
 
 
 
4386fca
f0022eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59dbc3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360d274
59dbc3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360d274
59dbc3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360d274
59dbc3e
 
 
360d274
59dbc3e
360d274
 
17e6751
 
 
360d274
 
 
 
 
 
 
 
 
44a51c4
360d274
 
 
 
 
17e6751
f0022eb
44a51c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0022eb
44a51c4
 
 
 
f0022eb
44a51c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0022eb
 
44a51c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0022eb
44a51c4
 
f0022eb
44a51c4
 
 
 
 
f0022eb
 
44a51c4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from app_settings import AppSettings
from utils import show_system_info
import constants
from argparse import ArgumentParser
from context import Context
from constants import APP_VERSION, LCM_DEFAULT_MODEL_OPENVINO
from models.interface_types import InterfaceType
from constants import DEVICE
from state import get_settings
import traceback


from fastapi import FastAPI,Body

import uvicorn
import json
import logging
from PIL import Image
import time

from diffusers.utils import load_image
import base64
import io
from datetime import datetime

from typing import Any
from backend.models.lcmdiffusion_setting import DiffusionTask

from frontend.utils import is_reshape_required
from concurrent.futures import ThreadPoolExecutor


context = Context(InterfaceType.WEBUI)
previous_width = 0
previous_height = 0
previous_model_id = ""
previous_num_of_images = 0

parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
parser.add_argument(
    "-s",
    "--share",
    action="store_true",
    help="Create sharable link(Web UI)",
    required=False,
)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument(
    "-g",
    "--gui",
    action="store_true",
    help="Start desktop GUI",
)
group.add_argument(
    "-w",
    "--webui",
    action="store_true",
    help="Start Web UI",
)
group.add_argument(
    "-r",
    "--realtime",
    action="store_true",
    help="Start realtime inference UI(experimental)",
)
group.add_argument(
    "-v",
    "--version",
    action="store_true",
    help="Version",
)
parser.add_argument(
    "--lcm_model_id",
    type=str,
    help="Model ID or path,Default SimianLuo/LCM_Dreamshaper_v7",
    default="SimianLuo/LCM_Dreamshaper_v7",
)
parser.add_argument(
    "--prompt",
    type=str,
    help="Describe the image you want to generate",
)
parser.add_argument(
    "--image_height",
    type=int,
    help="Height of the image",
    default=512,
)
parser.add_argument(
    "--image_width",
    type=int,
    help="Width of the image",
    default=512,
)
parser.add_argument(
    "--inference_steps",
    type=int,
    help="Number of steps,default : 4",
    default=4,
)
parser.add_argument(
    "--guidance_scale",
    type=int,
    help="Guidance scale,default : 1.0",
    default=1.0,
)

parser.add_argument(
    "--number_of_images",
    type=int,
    help="Number of images to generate ,default : 1",
    default=1,
)
parser.add_argument(
    "--seed",
    type=int,
    help="Seed,default : -1 (disabled) ",
    default=-1,
)
parser.add_argument(
    "--use_openvino",
    action="store_true",
    help="Use OpenVINO model",
)

parser.add_argument(
    "--use_offline_model",
    action="store_true",
    help="Use offline model",
)
parser.add_argument(
    "--use_safety_checker",
    action="store_false",
    help="Use safety checker",
)
parser.add_argument(
    "--use_lcm_lora",
    action="store_true",
    help="Use LCM-LoRA",
)
parser.add_argument(
    "--base_model_id",
    type=str,
    help="LCM LoRA base model ID,Default Lykon/dreamshaper-8",
    default="Lykon/dreamshaper-8",
)
parser.add_argument(
    "--lcm_lora_id",
    type=str,
    help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5",
    default="latent-consistency/lcm-lora-sdv1-5",
)
parser.add_argument(
    "-i",
    "--interactive",
    action="store_true",
    help="Interactive CLI mode",
)
parser.add_argument(
    "--use_tiny_auto_encoder",
    action="store_true",
    help="Use tiny auto encoder for SD (TAESD)",
)
args = parser.parse_args()

if args.version:
    print(APP_VERSION)
    exit()

parser.print_help()
show_system_info()
print(f"Using device : {constants.DEVICE}")
app_settings = get_settings()

print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
print(
    f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt"
)
print(
    f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt"
)
print(
    f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt"
)
app_settings.settings.lcm_diffusion_setting.use_openvino = True
from frontend.webui.ui import start_webui

print("Starting web UI mode")
start_webui(
    args.share,
)

# app = FastAPI(name="mutilParam")
# print("我执行了")
# @app.get("/")
# def root():
#     return {"API": "hello"}

# @app.post("/img2img")
# async def predict(prompt=Body(...),imgbase64data=Body(...),negative_prompt=Body(None),userId=Body(None)):
#     MAX_QUEUE_SIZE = 4
#     start = time.time()
#     print("参数",imgbase64data,prompt)
#     image_data = base64.b64decode(imgbase64data)
#     image1 = Image.open(io.BytesIO(image_data))
#     w, h = image1.size
#     newW = 512
#     newH = int(h * newW / w)
#     img = image1.resize((newW, newH))  
#     end1 = time.time()
#     now = datetime.now()
#     print(now)
#     print("图像:", img.size)
#     print("加载管道:", end1 - start)
#     global previous_height, previous_width, previous_model_id, previous_num_of_images, app_settings
    
#     app_settings.settings.lcm_diffusion_setting.prompt = prompt
#     app_settings.settings.lcm_diffusion_setting.negative_prompt = negative_prompt
#     app_settings.settings.lcm_diffusion_setting.init_image = image1
#     app_settings.settings.lcm_diffusion_setting.strength = 0.6
   
#     app_settings.settings.lcm_diffusion_setting.diffusion_task = (
#         DiffusionTask.image_to_image.value
#     )
#     model_id = app_settings.settings.lcm_diffusion_setting.openvino_lcm_model_id
#     reshape = False
#     app_settings.settings.lcm_diffusion_setting.image_height=newH
#     image_width = app_settings.settings.lcm_diffusion_setting.image_width
#     image_height = app_settings.settings.lcm_diffusion_setting.image_height
#     num_images = app_settings.settings.lcm_diffusion_setting.number_of_images
#     reshape = is_reshape_required(
#         previous_width,
#         image_width,
#         previous_height,
#         image_height,
#         previous_model_id,
#         model_id,
#         previous_num_of_images,
#         num_images,
#     )


#     with ThreadPoolExecutor(max_workers=1) as executor:
#         future = executor.submit(
#             context.generate_text_to_image,
#             app_settings.settings,
#             reshape,
#             DEVICE,
#         )
#         images = future.result()
#     previous_width = image_width
#     previous_height = image_height
#     previous_model_id = model_id
#     previous_num_of_images = num_images
#     output_image = images[0]
#     end2 = time.time()
#     print("测试",output_image)
#     print("s生成完成:", end2 - end1)    
#     # 将图片对象转换为bytes
#     image_data = io.BytesIO()

#     # 将图像保存到BytesIO对象中,格式为JPEG
#     output_image.save(image_data, format='JPEG')
    
#     # 将BytesIO对象的内容转换为字节串
#     image_data_bytes = image_data.getvalue()
#     output_image_base64 = base64.b64encode(image_data_bytes).decode('utf-8')
#     print("完成的图片:", output_image_base64)
#     return output_image_base64
        
    
# @app.post("/predict")
# async def predict(prompt=Body(...)):
#   return f"您好,{prompt}"