testlcm / app.py
michaelj's picture
Upload folder using huggingface_hub
59dbc3e
raw
history blame
7.3 kB
from app_settings import AppSettings
from utils import show_system_info
import constants
from argparse import ArgumentParser
from context import Context
from constants import APP_VERSION, LCM_DEFAULT_MODEL_OPENVINO
from models.interface_types import InterfaceType
from constants import DEVICE
from state import get_settings
import traceback
from fastapi import FastAPI,Body
import uvicorn
import json
import logging
from PIL import Image
import time
from diffusers.utils import load_image
import base64
import io
from datetime import datetime
from typing import Any
from backend.models.lcmdiffusion_setting import DiffusionTask
from frontend.utils import is_reshape_required
from concurrent.futures import ThreadPoolExecutor
context = Context(InterfaceType.WEBUI)
previous_width = 0
previous_height = 0
previous_model_id = ""
previous_num_of_images = 0
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
parser.add_argument(
"-s",
"--share",
action="store_true",
help="Create sharable link(Web UI)",
required=False,
)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument(
"-g",
"--gui",
action="store_true",
help="Start desktop GUI",
)
group.add_argument(
"-w",
"--webui",
action="store_true",
help="Start Web UI",
)
group.add_argument(
"-r",
"--realtime",
action="store_true",
help="Start realtime inference UI(experimental)",
)
group.add_argument(
"-v",
"--version",
action="store_true",
help="Version",
)
parser.add_argument(
"--lcm_model_id",
type=str,
help="Model ID or path,Default SimianLuo/LCM_Dreamshaper_v7",
default="SimianLuo/LCM_Dreamshaper_v7",
)
parser.add_argument(
"--prompt",
type=str,
help="Describe the image you want to generate",
)
parser.add_argument(
"--image_height",
type=int,
help="Height of the image",
default=512,
)
parser.add_argument(
"--image_width",
type=int,
help="Width of the image",
default=512,
)
parser.add_argument(
"--inference_steps",
type=int,
help="Number of steps,default : 4",
default=4,
)
parser.add_argument(
"--guidance_scale",
type=int,
help="Guidance scale,default : 1.0",
default=1.0,
)
parser.add_argument(
"--number_of_images",
type=int,
help="Number of images to generate ,default : 1",
default=1,
)
parser.add_argument(
"--seed",
type=int,
help="Seed,default : -1 (disabled) ",
default=-1,
)
parser.add_argument(
"--use_openvino",
action="store_true",
help="Use OpenVINO model",
)
parser.add_argument(
"--use_offline_model",
action="store_true",
help="Use offline model",
)
parser.add_argument(
"--use_safety_checker",
action="store_false",
help="Use safety checker",
)
parser.add_argument(
"--use_lcm_lora",
action="store_true",
help="Use LCM-LoRA",
)
parser.add_argument(
"--base_model_id",
type=str,
help="LCM LoRA base model ID,Default Lykon/dreamshaper-8",
default="Lykon/dreamshaper-8",
)
parser.add_argument(
"--lcm_lora_id",
type=str,
help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5",
default="latent-consistency/lcm-lora-sdv1-5",
)
parser.add_argument(
"-i",
"--interactive",
action="store_true",
help="Interactive CLI mode",
)
parser.add_argument(
"--use_tiny_auto_encoder",
action="store_true",
help="Use tiny auto encoder for SD (TAESD)",
)
args = parser.parse_args()
if args.version:
print(APP_VERSION)
exit()
parser.print_help()
show_system_info()
print(f"Using device : {constants.DEVICE}")
app_settings = get_settings()
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
print(
f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt"
)
print(
f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt"
)
print(
f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt"
)
app_settings.settings.lcm_diffusion_setting.use_openvino = True
from frontend.webui.ui import start_webui
print("Starting web UI mode")
start_webui(
args.share,
)
# app = FastAPI(name="mutilParam")
# print("我执行了")
# @app.get("/")
# def root():
# return {"API": "hello"}
# @app.post("/img2img")
# async def predict(prompt=Body(...),imgbase64data=Body(...),negative_prompt=Body(None),userId=Body(None)):
# MAX_QUEUE_SIZE = 4
# start = time.time()
# print("参数",imgbase64data,prompt)
# image_data = base64.b64decode(imgbase64data)
# image1 = Image.open(io.BytesIO(image_data))
# w, h = image1.size
# newW = 512
# newH = int(h * newW / w)
# img = image1.resize((newW, newH))
# end1 = time.time()
# now = datetime.now()
# print(now)
# print("图像:", img.size)
# print("加载管道:", end1 - start)
# global previous_height, previous_width, previous_model_id, previous_num_of_images, app_settings
# app_settings.settings.lcm_diffusion_setting.prompt = prompt
# app_settings.settings.lcm_diffusion_setting.negative_prompt = negative_prompt
# app_settings.settings.lcm_diffusion_setting.init_image = image1
# app_settings.settings.lcm_diffusion_setting.strength = 0.6
# app_settings.settings.lcm_diffusion_setting.diffusion_task = (
# DiffusionTask.image_to_image.value
# )
# model_id = app_settings.settings.lcm_diffusion_setting.openvino_lcm_model_id
# reshape = False
# app_settings.settings.lcm_diffusion_setting.image_height=newH
# image_width = app_settings.settings.lcm_diffusion_setting.image_width
# image_height = app_settings.settings.lcm_diffusion_setting.image_height
# num_images = app_settings.settings.lcm_diffusion_setting.number_of_images
# reshape = is_reshape_required(
# previous_width,
# image_width,
# previous_height,
# image_height,
# previous_model_id,
# model_id,
# previous_num_of_images,
# num_images,
# )
# with ThreadPoolExecutor(max_workers=1) as executor:
# future = executor.submit(
# context.generate_text_to_image,
# app_settings.settings,
# reshape,
# DEVICE,
# )
# images = future.result()
# previous_width = image_width
# previous_height = image_height
# previous_model_id = model_id
# previous_num_of_images = num_images
# output_image = images[0]
# end2 = time.time()
# print("测试",output_image)
# print("s生成完成:", end2 - end1)
# # 将图片对象转换为bytes
# image_data = io.BytesIO()
# # 将图像保存到BytesIO对象中,格式为JPEG
# output_image.save(image_data, format='JPEG')
# # 将BytesIO对象的内容转换为字节串
# image_data_bytes = image_data.getvalue()
# output_image_base64 = base64.b64encode(image_data_bytes).decode('utf-8')
# print("完成的图片:", output_image_base64)
# return output_image_base64
# @app.post("/predict")
# async def predict(prompt=Body(...)):
# return f"您好,{prompt}"