OmniParser / app.py
adamlu1's picture
minor
414afd9
from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import base64, os
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
import torch
from PIL import Image
# yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
# caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
from ultralytics import YOLO
yolo_model = YOLO('weights/icon_detect/best.pt').to('cuda')
from transformers import AutoProcessor, AutoModelForCausalLM
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("weights/icon_caption_florence", torch_dtype=torch.float16, trust_remote_code=True).to('cuda')
caption_model_processor = {'processor': processor, 'model': model}
print('finish loading model!!!')
MARKDOWN = """
# OmniParser for Pure Vision Based General GUI Agent 🔥
<div>
<a href="https://arxiv.org/pdf/2408.00203">
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
</a>
</div>
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
📢 [[Project Page](https://microsoft.github.io/OmniParser/)] [[Blog Post](https://www.microsoft.com/en-us/research/articles/omniparser-for-pure-vision-based-gui-agent/)] [[Models](https://huggingface.co/microsoft/OmniParser)]
"""
# DEVICE = torch.device('cuda')
@spaces.GPU
@torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
# @spaces.GPU(duration=65)
def process(
image_input,
box_threshold,
iou_threshold
) -> Optional[Image.Image]:
image_save_path = 'imgs/saved_image_demo.png'
image_input.save(image_save_path)
# import pdb; pdb.set_trace()
image = Image.open(image_save_path)
box_overlay_ratio = image.size[0] / 3200
draw_bbox_config = {
'text_scale': 0.8 * box_overlay_ratio,
'text_thickness': max(int(2 * box_overlay_ratio), 1),
'text_padding': max(int(3 * box_overlay_ratio), 1),
'thickness': max(int(3 * box_overlay_ratio), 1),
}
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=True)
text, ocr_bbox = ocr_bbox_rslt
# print('prompt:', prompt)
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold)
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
print('finish processing')
parsed_content_list = '\n'.join(parsed_content_list)
return image, str(parsed_content_list), str(label_coordinates)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
box_threshold_component = gr.Slider(
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
iou_threshold_component = gr.Slider(
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
submit_button_component = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image Output')
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
coordinates_output_component = gr.Textbox(label='Coordinates', placeholder='Coordinates Output')
submit_button_component.click(
fn=process,
inputs=[
image_input_component,
box_threshold_component,
iou_threshold_component
],
outputs=[image_output_component, text_output_component, coordinates_output_component]
)
# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False)