Spaces:
Running
Running
import gradio as grad | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
def load_prompter(): | |
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist") | |
tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
return prompter_model, tokenizer | |
prompter_model, prompter_tokenizer = load_prompter() | |
def generate(plain_text): | |
input_ids = prompter_tokenizer(plain_text.strip()+" Rephrase:", return_tensors="pt").input_ids | |
eos_id = prompter_tokenizer.eos_token_id | |
outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=8, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0) | |
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
res = output_texts[0].replace(plain_text+" Rephrase:", "").strip() | |
print("[I] Prompter input: %s" % plain_text) | |
print("[I] Prompter output: %s \n------------\n" % res) | |
return res | |
txt = grad.Textbox(lines=1, label="Initial Text", placeholder="Input Prompt") | |
out = grad.Textbox(lines=1, label="Optimized Prompt") | |
grad.Interface(fn=generate, | |
inputs=txt, | |
outputs=out, | |
title="Promptist", | |
allow_flagging='never', | |
cache_examples=False, | |
theme="default").launch(enable_queue=True, debug=True) |