File size: 846 Bytes
8069557
7c73a10
 
8069557
 
 
98d3449
8069557
7c73a10
8069557
 
7c73a10
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
---
title: VPTQ Demo
emoji: 🚀
colorFrom: blue
colorTo: green
sdk: static
# pinned: true
license: mit
short_description: Vector Post Training Quantization Inference Demo
---

Vector Post-Training Quantization (VPTQ) is a novel Post-Training Quantization method that leverages Vector Quantization to high accuracy on LLMs at an extremely low bit-width (<2-bit). VPTQ can compress 70B, even the 405B model, to 1-2 bits without retraining and maintain high accuracy.

* Better Accuracy on 1-2 bits, (405B @ <2bit, 70B @ 2bit)
* Lightweight Quantization Algorithm: only cost ~17 hours to quantize 405B Llama-3.1
* Agile Quantization Inference: low decode overhead, best throughput, and TTFT

[Github/Codes](https://github.com/microsoft/VPTQ)

[Online Demo](https://huggingface.co/spaces/microsoft/VPTQ)

[Paper](https://arxiv.org/abs/2409.17066)