Spaces:
Sleeping
Sleeping
import spacy | |
import pytextrank | |
import re | |
from operator import itemgetter | |
import en_core_web_sm | |
class KeywordExtractor: | |
def __init__(self): | |
self.nlp = en_core_web_sm.load() | |
self.nlp.add_pipe("textrank") | |
def get_keywords(self, text, max_keywords): | |
doc = self.nlp(text) | |
kws = [i.text for i in doc._.phrases[:max_keywords]] | |
return kws | |
def get_keyword_indicies(self, string_list, text): | |
out = [] | |
for s in string_list: | |
indicies = [[m.start(), m.end()] for m in re.finditer(re.escape(s), text)] | |
out.extend(indicies) | |
return out | |
def merge_overlapping_indicies(self, indicies): | |
# Sort the array on the basis of start values of intervals. | |
indicies.sort() | |
stack = [] | |
# insert first interval into stack | |
stack.append(indicies[0]) | |
for i in indicies[1:]: | |
# Check for overlapping interval, | |
# if interval overlap | |
if (stack[-1][0] <= i[0] <= stack[-1][-1]) or (stack[-1][-1] == i[0]-1): | |
stack[-1][-1] = max(stack[-1][-1], i[-1]) | |
else: | |
stack.append(i) | |
return stack | |
def merge_until_finished(self, indicies): | |
len_indicies = 0 | |
while True: | |
merged = self.merge_overlapping_indicies(indicies) | |
if len_indicies == len(merged): | |
out_indicies = sorted(merged, key=itemgetter(0)) | |
return out_indicies | |
else: | |
len_indicies = len(merged) | |
def get_annotation(self, text, indicies, kws): | |
# Convert indicies to list | |
# kws = kws + [i.lower() for i in kws] | |
arr = list(text) | |
for idx in sorted(indicies, reverse=True): | |
arr.insert(idx[0], "<kw>") | |
arr.insert(idx[1]+1, "XXXxxxXXXxxxXXX <kw>") | |
annotation = ''.join(arr) | |
split = annotation.split('<kw>') | |
final_annotation = [(x.replace('XXXxxxXXXxxxXXX ', ''), "KEY", "#26aaef") if "XXXxxxXXXxxxXXX" in x else x for x in split] | |
kws_check = [] | |
for i in final_annotation: | |
if type(i) is tuple: | |
kws_check.append(i[0]) | |
return final_annotation | |
def generate(self, text, max_keywords): | |
kws = self.get_keywords(text, max_keywords) | |
indicies = list(self.get_keyword_indicies(kws, text)) | |
if indicies: | |
indicies_merged = self.merge_until_finished(indicies) | |
annotation = self.get_annotation(text, indicies_merged, kws) | |
else: | |
annotation = None | |
return annotation, kws | |