File size: 3,445 Bytes
e295ac3
 
 
c212cb7
e295ac3
 
2a5f9fb
e295ac3
2a5f9fb
e295ac3
2a5f9fb
e295ac3
 
 
 
 
2a5f9fb
06acefd
e295ac3
 
2a5f9fb
e295ac3
2a5f9fb
e295ac3
 
2a5f9fb
e295ac3
 
 
 
c212cb7
e295ac3
2a5f9fb
 
e295ac3
 
 
 
 
 
 
 
 
2a5f9fb
 
 
06acefd
e295ac3
 
 
c212cb7
 
e295ac3
c212cb7
2a5f9fb
 
 
c212cb7
2a5f9fb
 
e295ac3
2a5f9fb
 
 
 
 
 
 
c212cb7
e295ac3
 
 
 
 
2a5f9fb
e295ac3
 
c212cb7
2a5f9fb
 
 
c212cb7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import pandas as pd
from pandas import DataFrame
from huggingface_hub import get_collection, add_collection_item, update_collection_item, delete_collection_item
from huggingface_hub.utils._errors import HfHubHTTPError

from src.display.utils import AutoEvalColumn, ModelType

from src.envs import H4_TOKEN, PATH_TO_COLLECTION

# Specific intervals for the collections
intervals = {
    "1B": pd.Interval(0, 1.5, closed="right"),
    "3B": pd.Interval(2.5, 3.5, closed="neither"),
    "7B": pd.Interval(6, 8, closed="neither"),
    "13B": pd.Interval(10, 14, closed="neither"),
    "30B": pd.Interval(25, 35, closed="neither"),
    "65B": pd.Interval(60, 70, closed="neither"),
}


def update_collections(df: DataFrame):
    """This function updates the Open LLM Leaderboard model collection with the latest best models for
    each size category and type.
    """
    collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
    params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")

    cur_best_models = []

    ix = 0
    for type in ModelType:
        if type.value.name == "":
            continue
        for size in intervals:
            # We filter the df to gather the relevant models
            type_emoji = [t[0] for t in type.value.symbol]
            filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]

            numeric_interval = pd.IntervalIndex([intervals[size]])
            mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
            filtered_df = filtered_df.loc[mask]

            best_models = list(
                filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name]
            )
            print(type.value.symbol, size, best_models[:10])

            # We add them one by one to the leaderboard
            for model in best_models:
                ix += 1
                cur_len_collection = len(collection.items)
                try:
                    collection = add_collection_item(
                        PATH_TO_COLLECTION,
                        item_id=model,
                        item_type="model",
                        exists_ok=True,
                        note=f"Best {type.to_str(' ')} model of around {size} on the leaderboard today!",
                        token=H4_TOKEN,
                    )
                    if (
                        len(collection.items) > cur_len_collection
                    ):  # we added an item - we make sure its position is correct
                        item_object_id = collection.items[-1].item_object_id
                        update_collection_item(
                            collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix
                        )
                        cur_len_collection = len(collection.items)
                    cur_best_models.append(model)
                    break
                except HfHubHTTPError:
                    continue

    collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
    for item in collection.items:
        if item.item_id not in cur_best_models:
            try:
                delete_collection_item(
                    collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
                )
            except HfHubHTTPError:
                continue