Spaces:
Build error
Build error
# import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga2", use_fast=False) | |
# model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga2", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") | |
# system_prompt = "### System:\nYou are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n" | |
# pipeline = pipeline(task="text-generation", model="meta-llama/Llama-2-7b") | |
tokenizer = AutoTokenizer.from_pretrained( | |
"THUDM/chatglm2-6b-int4", trust_remote_code=True | |
) | |
chat_model = AutoModel.from_pretrained( | |
"THUDM/chatglm2-6b-int4", trust_remote_code=True | |
).float() | |
def chat(message, history): | |
# prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n" | |
# inputs = tokenizer(prompt, return_tensors="pt").to(device=device) | |
# output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256) | |
# return tokenizer.decode(output[0], skip_special_tokens=True) | |
for response, history in chat_model.stream_chat( | |
tokenizer, message, history, max_length=2048, top_p=0.7, temperature=0.95 | |
): | |
yield response | |
gr.ChatInterface( | |
chat, | |
title="gradio-chatinterface-tryout", | |
# description="fooling around", | |
examples=[ | |
["test me"], | |
], | |
theme=gr.themes.Soft(), | |
).queue(max_size=2).launch() | |