"""Run codes.""" # pylint: disable=line-too-long, broad-exception-caught, invalid-name, missing-function-docstring, too-many-instance-attributes, missing-class-docstring # ruff: noqa: E501 import os import platform import random import time from dataclasses import asdict, dataclass, field from pathlib import Path # from types import SimpleNamespace import gradio as gr import psutil from about_time import about_time from ctransformers import AutoModelForCausalLM from dl_hf_model import dl_hf_model from loguru import logger url = "https://huggingface.co/TheBloke/llama-2-13B-Guanaco-QLoRA-GGML/blob/main/llama-2-13b-guanaco-qlora.ggmlv3.q4_K_S.bin" # 8.14G # Prompt template: Guanaco # {past_history} prompt_template = """You are a helpful assistant. Let's think step by step. ### Human: {input} ### Assistant:""" human_prefix = "### Human" ai_prefix = "### Assistant" stop_list = [f"{human_prefix}:"] _ = psutil.cpu_count(logical=False) - 1 cpu_count: int = int(_) if _ else 1 logger.debug(f"{cpu_count=}") LLM = None if "forindo" in platform.node(): # url = "https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-GGML/blob/main/llama-2-70b-guanaco-qlora.ggmlv3.q3_K_S.bin" # 29.7G model_loc = "/home/mu2018/github/langchain-llama-2-70b-guanaco-qlora-ggml/models/llama-2-70b-guanaco-qlora.ggmlv3.q3_K_S.bin" assert Path(model_loc).exists(), f"Make sure {model_loc=} exists." else: try: model_loc, file_size = dl_hf_model(url) logger.info(f"done load llm {model_loc=} {file_size=}G") except Exception as exc_: logger.error(exc_) raise SystemExit(1) from exc_ logger.debug(f"{model_loc=}") LLM = AutoModelForCausalLM.from_pretrained( model_loc, model_type="llama", threads=cpu_count, ) os.environ["TZ"] = "Asia/Shanghai" try: time.tzset() # type: ignore # pylint: disable=no-member except Exception: # Windows logger.warning("Windows, cant run time.tzset()") @dataclass class GenerationConfig: temperature: float = 0.7 top_k: int = 50 top_p: float = 0.9 repetition_penalty: float = 1.0 max_new_tokens: int = 512 seed: int = 42 reset: bool = False stream: bool = True threads: int = cpu_count stop: list[str] = field(default_factory=lambda: stop_list) def generate( question: str, llm=LLM, config: GenerationConfig = GenerationConfig(), ): """Run model inference, will return a Generator if streaming is true.""" # _ = prompt_template.format(question=question) # print(_) prompt = prompt_template.format(question=question) return llm( prompt, **asdict(config), ) logger.debug(f"{asdict(GenerationConfig())=}") def user(user_message, history): # return user_message, history + [[user_message, None]] history.append([user_message, None]) return user_message, history # keep user_message def user1(user_message, history): # return user_message, history + [[user_message, None]] history.append([user_message, None]) return "", history # clear user_message def bot_(history): user_message = history[-1][0] resp = random.choice(["How are you?", "I love you", "I'm very hungry"]) bot_message = user_message + ": " + resp history[-1][1] = "" for character in bot_message: history[-1][1] += character time.sleep(0.02) yield history history[-1][1] = resp yield history def bot(history): user_message = history[-1][0] response = [] logger.debug(f"{user_message=}") with about_time() as atime: # type: ignore flag = 1 prefix = "" then = time.time() logger.debug("about to generate") config = GenerationConfig(reset=True) for elm in generate(user_message, config=config): if flag == 1: logger.debug("in the loop") prefix = f"({time.time() - then:.2f}s) " flag = 0 print(prefix, end="", flush=True) logger.debug(f"{prefix=}") print(elm, end="", flush=True) # logger.debug(f"{elm}") response.append(elm) history[-1][1] = prefix + "".join(response) yield history _ = ( f"(time elapsed: {atime.duration_human}, " # type: ignore f"{atime.duration/len(''.join(response)):.2f}s/char)" # type: ignore ) history[-1][1] = "".join(response) + f"\n{_}" yield history def predict_api(prompt): logger.debug(f"{prompt=}") try: # user_prompt = prompt config = GenerationConfig( temperature=0.2, top_k=10, top_p=0.9, repetition_penalty=1.0, max_new_tokens=512, # adjust as needed seed=42, reset=True, # reset history (cache) stream=False, # threads=cpu_count, # stop=prompt_prefix[1:2], ) response = generate( prompt, config=config, ) logger.debug(f"api: {response=}") except Exception as exc: logger.error(exc) response = f"{exc=}" # bot = {"inputs": [response]} # bot = [(prompt, response)] return response css = """ .importantButton { background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; border: none !important; } .importantButton:hover { background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; border: none !important; } .disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;} .xsmall {font-size: x-small;} """ etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """ examples_list = [ ["What NFL team won the Super Bowl in the year Justin Bieber was born?"], [ "What NFL team won the Super Bowl in the year Justin Bieber was born? Think step by step." ], ["How to pick a lock? Provide detailed steps."], [ "If it takes 10 hours to dry 10 clothes, assuming all the clothes are hanged together at the same time for drying , then how long will it take to dry a cloth?" ], ["is infinity + 1 bigger than infinity?"], ["Explain the plot of Cinderella in a sentence."], [ "How long does it take to become proficient in French, and what are the best methods for retaining information?" ], ["What are some common mistakes to avoid when writing code?"], ["Build a prompt to generate a beautiful portrait of a horse"], ["Suggest four metaphors to describe the benefits of AI"], ["Write a pop song about leaving home for the sandy beaches."], ["Write a summary demonstrating my ability to tame lions"], ["鲁迅和周树人什么关系? 说中文。"], ["鲁迅和周树人什么关系?"], ["鲁迅和周树人什么关系? 用英文回答。"], ["从前有一头牛,这头牛后面有什么?"], ["正无穷大加一大于正无穷大吗?"], ["正无穷大加正无穷大大于正无穷大吗?"], ["-2的平方根等于什么?"], ["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"], ["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"], ["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"], [f"{etext} 翻成中文,列出3个版本。"], [f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本。"], ["假定 1 + 2 = 4, 试求 7 + 8。"], ["给出判断一个数是不是质数的 javascript 码。"], ["给出实现python 里 range(10)的 javascript 码。"], ["给出实现python 里 [*(range(10)]的 javascript 码。"], ["Erkläre die Handlung von Cinderella in einem Satz."], ["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch."], ] logger.info("start block") with gr.Blocks( title=f"{Path(model_loc).name}", theme=gr.themes.Soft(text_size="sm", spacing_size="sm"), css=css, ) as block: # buff_var = gr.State("") with gr.Accordion("🎈 Info", open=False): gr.Markdown( f"""