Spaces:
Runtime error
Runtime error
ffreemt
commited on
Commit
•
b836071
1
Parent(s):
5a1e312
Update
Browse files
app-.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Refer to https://github.com/abacaj/mpt-30B-inference/blob/main/download_model.py."""
|
2 |
+
# pylint: disable=invalid-name, missing-function-docstring, missing-class-docstring, redefined-outer-name, broad-except
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from dataclasses import asdict, dataclass
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
from ctransformers import AutoConfig, AutoModelForCausalLM
|
9 |
+
|
10 |
+
# from mcli import predict
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
from loguru import logger
|
13 |
+
|
14 |
+
URL = os.environ.get("URL")
|
15 |
+
_ = """
|
16 |
+
if URL is None:
|
17 |
+
raise ValueError("URL environment variable must be set")
|
18 |
+
if os.environ.get("MOSAICML_API_KEY") is None:
|
19 |
+
raise ValueError("git environment variable must be set")
|
20 |
+
# """
|
21 |
+
|
22 |
+
|
23 |
+
def predict0(prompt, bot, timeout):
|
24 |
+
logger.debug(f"{prompt=}, {bot=}, {timeout=}")
|
25 |
+
try:
|
26 |
+
user_prompt = prompt
|
27 |
+
generator = generate(llm, generation_config, system_prompt, user_prompt.strip())
|
28 |
+
print(assistant_prefix, end=" ", flush=True)
|
29 |
+
for word in generator:
|
30 |
+
print(word, end="", flush=True)
|
31 |
+
print("")
|
32 |
+
response = word
|
33 |
+
except Exception as exc:
|
34 |
+
logger.error(exc)
|
35 |
+
response = f"{exc=}"
|
36 |
+
bot = {"inputs": [response]}
|
37 |
+
|
38 |
+
return prompt, bot
|
39 |
+
|
40 |
+
|
41 |
+
def download_mpt_quant(destination_folder: str, repo_id: str, model_filename: str):
|
42 |
+
local_path = os.path.abspath(destination_folder)
|
43 |
+
return hf_hub_download(
|
44 |
+
repo_id=repo_id,
|
45 |
+
filename=model_filename,
|
46 |
+
local_dir=local_path,
|
47 |
+
local_dir_use_symlinks=True,
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class GenerationConfig:
|
53 |
+
temperature: float
|
54 |
+
top_k: int
|
55 |
+
top_p: float
|
56 |
+
repetition_penalty: float
|
57 |
+
max_new_tokens: int
|
58 |
+
seed: int
|
59 |
+
reset: bool
|
60 |
+
stream: bool
|
61 |
+
threads: int
|
62 |
+
stop: list[str]
|
63 |
+
|
64 |
+
|
65 |
+
def format_prompt(system_prompt: str, user_prompt: str):
|
66 |
+
"""format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py"""
|
67 |
+
|
68 |
+
system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
|
69 |
+
user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n"
|
70 |
+
assistant_prompt = f"<|im_start|>assistant\n"
|
71 |
+
|
72 |
+
return f"{system_prompt}{user_prompt}{assistant_prompt}"
|
73 |
+
|
74 |
+
|
75 |
+
def generate(
|
76 |
+
llm: AutoModelForCausalLM,
|
77 |
+
generation_config: GenerationConfig,
|
78 |
+
system_prompt: str,
|
79 |
+
user_prompt: str,
|
80 |
+
):
|
81 |
+
"""run model inference, will return a Generator if streaming is true"""
|
82 |
+
|
83 |
+
return llm(
|
84 |
+
format_prompt(
|
85 |
+
system_prompt,
|
86 |
+
user_prompt,
|
87 |
+
),
|
88 |
+
**asdict(generation_config),
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
class Chat:
|
93 |
+
default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers."
|
94 |
+
system_format = "<|im_start|>system\n{}<|im_end|>\n"
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self, system: str = None, user: str = None, assistant: str = None
|
98 |
+
) -> None:
|
99 |
+
if system is not None:
|
100 |
+
self.set_system_prompt(system)
|
101 |
+
else:
|
102 |
+
self.reset_system_prompt()
|
103 |
+
self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n"
|
104 |
+
self.assistant = (
|
105 |
+
assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n"
|
106 |
+
)
|
107 |
+
self.response_prefix = self.assistant.split("{}", maxsplit=1)[0]
|
108 |
+
|
109 |
+
def set_system_prompt(self, system_prompt):
|
110 |
+
# self.system = self.system_format.format(system_prompt)
|
111 |
+
return system_prompt
|
112 |
+
|
113 |
+
def reset_system_prompt(self):
|
114 |
+
return self.set_system_prompt(self.default_system_prompt)
|
115 |
+
|
116 |
+
def history_as_formatted_str(self, system, history) -> str:
|
117 |
+
system = self.system_format.format(system)
|
118 |
+
text = system + "".join(
|
119 |
+
[
|
120 |
+
"\n".join(
|
121 |
+
[
|
122 |
+
self.user.format(item[0]),
|
123 |
+
self.assistant.format(item[1]),
|
124 |
+
]
|
125 |
+
)
|
126 |
+
for item in history[:-1]
|
127 |
+
]
|
128 |
+
)
|
129 |
+
text += self.user.format(history[-1][0])
|
130 |
+
text += self.response_prefix
|
131 |
+
# stopgap solution to too long sequences
|
132 |
+
if len(text) > 4500:
|
133 |
+
# delete from the middle between <|im_start|> and <|im_end|>
|
134 |
+
# find the middle ones, then expand out
|
135 |
+
start = text.find("<|im_start|>", 139)
|
136 |
+
end = text.find("<|im_end|>", 139)
|
137 |
+
while end < len(text) and len(text) > 4500:
|
138 |
+
end = text.find("<|im_end|>", end + 1)
|
139 |
+
text = text[:start] + text[end + 1 :]
|
140 |
+
if len(text) > 4500:
|
141 |
+
# the nice way didn't work, just truncate
|
142 |
+
# deleting the beginning
|
143 |
+
text = text[-4500:]
|
144 |
+
|
145 |
+
return text
|
146 |
+
|
147 |
+
def clear_history(self, history):
|
148 |
+
return []
|
149 |
+
|
150 |
+
def turn(self, user_input: str):
|
151 |
+
self.user_turn(user_input)
|
152 |
+
return self.bot_turn()
|
153 |
+
|
154 |
+
def user_turn(self, user_input: str, history):
|
155 |
+
history.append([user_input, ""])
|
156 |
+
return user_input, history
|
157 |
+
|
158 |
+
def bot_turn(self, system, history):
|
159 |
+
conversation = self.history_as_formatted_str(system, history)
|
160 |
+
assistant_response = call_inf_server(conversation)
|
161 |
+
history[-1][-1] = assistant_response
|
162 |
+
print(system)
|
163 |
+
print(history)
|
164 |
+
return "", history
|
165 |
+
|
166 |
+
|
167 |
+
def call_inf_server(prompt):
|
168 |
+
try:
|
169 |
+
response = predict(
|
170 |
+
URL,
|
171 |
+
{"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512},
|
172 |
+
timeout=70,
|
173 |
+
)
|
174 |
+
# print(f'prompt: {prompt}')
|
175 |
+
# print(f'len(prompt): {len(prompt)}')
|
176 |
+
response = response["outputs"][0]
|
177 |
+
# print(f'len(response): {len(response)}')
|
178 |
+
# remove spl tokens from prompt
|
179 |
+
spl_tokens = ["<|im_start|>", "<|im_end|>"]
|
180 |
+
clean_prompt = prompt.replace(spl_tokens[0], "").replace(spl_tokens[1], "")
|
181 |
+
|
182 |
+
# return response[len(clean_prompt) :] # remove the prompt
|
183 |
+
try:
|
184 |
+
user_prompt = prompt
|
185 |
+
generator = generate(llm, generation_config, system_prompt, user_prompt.strip())
|
186 |
+
print(assistant_prefix, end=" ", flush=True)
|
187 |
+
for word in generator:
|
188 |
+
print(word, end="", flush=True)
|
189 |
+
print("")
|
190 |
+
response = word
|
191 |
+
except Exception as exc:
|
192 |
+
logger.error(exc)
|
193 |
+
response = f"{exc=}"
|
194 |
+
return response
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
# assume it is our error
|
198 |
+
# just wait and try one more time
|
199 |
+
print(e)
|
200 |
+
time.sleep(1)
|
201 |
+
response = predict(
|
202 |
+
URL,
|
203 |
+
{"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512},
|
204 |
+
timeout=70,
|
205 |
+
)
|
206 |
+
# print(response)
|
207 |
+
response = response["outputs"][0]
|
208 |
+
return response[len(prompt) :] # remove the prompt
|
209 |
+
|
210 |
+
|
211 |
+
logger.info("start dl")
|
212 |
+
_ = """full url: https://huggingface.co/TheBloke/mpt-30B-chat-GGML/blob/main/mpt-30b-chat.ggmlv0.q4_1.bin"""
|
213 |
+
|
214 |
+
repo_id = "TheBloke/mpt-30B-chat-GGML"
|
215 |
+
model_filename = "mpt-30b-chat.ggmlv0.q4_1.bin"
|
216 |
+
destination_folder = "models"
|
217 |
+
|
218 |
+
download_mpt_quant(destination_folder, repo_id, model_filename)
|
219 |
+
|
220 |
+
logger.info("done dl")
|
221 |
+
|
222 |
+
config = AutoConfig.from_pretrained("mosaicml/mpt-30b-chat", context_length=8192)
|
223 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
224 |
+
os.path.abspath("models/mpt-30b-chat.ggmlv0.q4_1.bin"),
|
225 |
+
model_type="mpt",
|
226 |
+
config=config,
|
227 |
+
)
|
228 |
+
|
229 |
+
system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers."
|
230 |
+
|
231 |
+
generation_config = GenerationConfig(
|
232 |
+
temperature=0.2,
|
233 |
+
top_k=0,
|
234 |
+
top_p=0.9,
|
235 |
+
repetition_penalty=1.0,
|
236 |
+
max_new_tokens=512, # adjust as needed
|
237 |
+
seed=42,
|
238 |
+
reset=False, # reset history (cache)
|
239 |
+
stream=True, # streaming per word/token
|
240 |
+
threads=int(os.cpu_count() / 2), # adjust for your CPU
|
241 |
+
stop=["<|im_end|>", "|<"],
|
242 |
+
)
|
243 |
+
|
244 |
+
user_prefix = "[user]: "
|
245 |
+
assistant_prefix = "[assistant]:"
|
246 |
+
|
247 |
+
with gr.Blocks(
|
248 |
+
theme=gr.themes.Soft(),
|
249 |
+
css=".disclaimer {font-variant-caps: all-small-caps;}",
|
250 |
+
) as demo:
|
251 |
+
gr.Markdown(
|
252 |
+
"""<h1><center>MosaicML MPT-30B-Chat</center></h1>
|
253 |
+
|
254 |
+
This demo is of [MPT-30B-Chat](https://huggingface.co/mosaicml/mpt-30b-ch a t). It is based on [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) fine-tuned on approximately 300,000 turns of high-quality conversations, and is powered by [MosaicML Inference](https://www.mosaicml.com/inference).
|
255 |
+
|
256 |
+
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs, [sign up](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b) for MosaicML platform.
|
257 |
+
|
258 |
+
"""
|
259 |
+
)
|
260 |
+
conversation = Chat()
|
261 |
+
chatbot = gr.Chatbot().style(height=500)
|
262 |
+
with gr.Row():
|
263 |
+
with gr.Column():
|
264 |
+
msg = gr.Textbox(
|
265 |
+
label="Chat Message Box",
|
266 |
+
placeholder="Chat Message Box",
|
267 |
+
show_label=False,
|
268 |
+
).style(container=False)
|
269 |
+
with gr.Column():
|
270 |
+
with gr.Row():
|
271 |
+
submit = gr.Button("Submit")
|
272 |
+
stop = gr.Button("Stop")
|
273 |
+
clear = gr.Button("Clear")
|
274 |
+
with gr.Row():
|
275 |
+
with gr.Accordion("Advanced Options:", open=False):
|
276 |
+
with gr.Row():
|
277 |
+
with gr.Column(scale=2):
|
278 |
+
system = gr.Textbox(
|
279 |
+
label="System Prompt",
|
280 |
+
value=Chat.default_system_prompt,
|
281 |
+
show_label=False,
|
282 |
+
).style(container=False)
|
283 |
+
with gr.Column():
|
284 |
+
with gr.Row():
|
285 |
+
change = gr.Button("Change System Prompt")
|
286 |
+
reset = gr.Button("Reset System Prompt")
|
287 |
+
with gr.Row():
|
288 |
+
gr.Markdown(
|
289 |
+
"Disclaimer: MPT-30B can produce factually incorrect output, and should not be relied on to produce "
|
290 |
+
"factually accurate information. MPT-30B was trained on various public datasets; while great efforts "
|
291 |
+
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
|
292 |
+
"biased, or otherwise offensive outputs.",
|
293 |
+
elem_classes=["disclaimer"],
|
294 |
+
)
|
295 |
+
with gr.Row():
|
296 |
+
gr.Markdown(
|
297 |
+
"[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
|
298 |
+
elem_classes=["disclaimer"],
|
299 |
+
)
|
300 |
+
|
301 |
+
_ = """
|
302 |
+
submit_event = msg.submit(
|
303 |
+
fn=conversation.user_turn,
|
304 |
+
inputs=[msg, chatbot],
|
305 |
+
outputs=[msg, chatbot],
|
306 |
+
queue=False,
|
307 |
+
).then(
|
308 |
+
fn=conversation.bot_turn,
|
309 |
+
inputs=[system, chatbot],
|
310 |
+
outputs=[msg, chatbot],
|
311 |
+
queue=True,
|
312 |
+
)
|
313 |
+
submit_click_event = submit.click(
|
314 |
+
fn=conversation.user_turn,
|
315 |
+
inputs=[msg, chatbot],
|
316 |
+
outputs=[msg, chatbot],
|
317 |
+
queue=False,
|
318 |
+
).then(
|
319 |
+
# fn=conversation.bot_turn,
|
320 |
+
inputs=[system, chatbot],
|
321 |
+
outputs=[msg, chatbot],
|
322 |
+
queue=True,
|
323 |
+
)
|
324 |
+
|
325 |
+
stop.click(
|
326 |
+
fn=None,
|
327 |
+
inputs=None,
|
328 |
+
outputs=None,
|
329 |
+
cancels=[submit_event, submit_click_event],
|
330 |
+
queue=False,
|
331 |
+
)
|
332 |
+
clear.click(lambda: None, None, chatbot, queue=False).then(
|
333 |
+
fn=conversation.clear_history,
|
334 |
+
inputs=[chatbot],
|
335 |
+
outputs=[chatbot],
|
336 |
+
queue=False,
|
337 |
+
)
|
338 |
+
change.click(
|
339 |
+
fn=conversation.set_system_prompt,
|
340 |
+
inputs=[system],
|
341 |
+
outputs=[system],
|
342 |
+
queue=False,
|
343 |
+
)
|
344 |
+
reset.click(
|
345 |
+
fn=conversation.reset_system_prompt,
|
346 |
+
inputs=[],
|
347 |
+
outputs=[system],
|
348 |
+
queue=False,
|
349 |
+
)
|
350 |
+
# """
|
351 |
+
|
352 |
+
|
353 |
+
demo.queue(max_size=36, concurrency_count=14).launch(debug=True)
|
app.py
CHANGED
@@ -321,7 +321,6 @@ with gr.Blocks(
|
|
321 |
outputs=[msg, chatbot],
|
322 |
queue=True,
|
323 |
)
|
324 |
-
# """
|
325 |
|
326 |
stop.click(
|
327 |
fn=None,
|
@@ -348,6 +347,7 @@ with gr.Blocks(
|
|
348 |
outputs=[system],
|
349 |
queue=False,
|
350 |
)
|
|
|
351 |
|
352 |
|
353 |
demo.queue(max_size=36, concurrency_count=14).launch(debug=True)
|
|
|
321 |
outputs=[msg, chatbot],
|
322 |
queue=True,
|
323 |
)
|
|
|
324 |
|
325 |
stop.click(
|
326 |
fn=None,
|
|
|
347 |
outputs=[system],
|
348 |
queue=False,
|
349 |
)
|
350 |
+
# """
|
351 |
|
352 |
|
353 |
demo.queue(max_size=36, concurrency_count=14).launch(debug=True)
|