import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "Qwen/Qwen2.5-7B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) @spaces.GPU def generate(prompt, history): messages = [ {"role": "system", "content": """You are a professional translator. Your mission is to translate the given English into Chinese. Carefully analyze the structure of the English text before translating. The output format should be a JSON, it only contains one field: zh representing Chinese translation results. Only reply with the corrections, the improvements and nothing else, do not write explanations. This is an example: \n Hello\n {"en": "你好"}"""}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response chat_interface = gr.ChatInterface( fn=generate, ) chat_interface.launch(share=True)