Spaces:
Runtime error
Runtime error
"""Convert two lists of str (texts) to correlation matrix.""" | |
# pylint: disable=too-many-arguments, too-many-locals, unused-import | |
from typing import Dict, Iterable, List, Optional, Union # noqa | |
import numpy as np | |
from textacy.representations import Vectorizer | |
from fastlid import fastlid | |
from radiobee.en2zh_tokens import en2zh_tokens | |
from radiobee.insert_spaces import insert_spaces | |
from radiobee.gen_model import gen_model | |
from radiobee.smatrix import smatrix | |
# fmt: off | |
def lists2cmat( | |
text1: Union[str, Iterable[str]], | |
text2: Union[str, Iterable[str]], | |
# text1: Union[str, List[str]], | |
# text2: Union[str, List[str]], | |
lang1: Optional[str] = None, | |
lang2: Optional[str] = None, | |
model: Vectorizer = None, | |
tf_type: str = "linear", | |
idf_type: Optional[str] = "smooth", | |
# dl_type: Optional[str] = "sqrt", # "lucene-style tfidf" | |
dl_type: Optional[str] = None, # | |
norm: Optional[str] = "l2", # + "l2" | |
min_df: Union[int, float] = 1, | |
max_df: Union[int, float] = 1.0, | |
max_n_terms: Optional[int] = None, | |
vocabulary_terms: Optional[Union[Dict[str, int], Iterable[str]]] = None | |
) -> np.ndarray: | |
# fmt: on | |
"""Convert two lists to cmat. | |
Args: | |
text1: refer smatrix | |
text2: refer smatrix | |
lang1: optional 1st lang code | |
lang2: optional 2nd lang code | |
dl_type: doc lenth | |
idf_type: idf tyoe | |
max_df: max doc freq | |
max_n_terms: max n terms | |
min_df: min doc freq | |
model: optional model | |
norm: norm | |
tf_type: term freq type | |
vocabulary_terms: vocab refer smatrix | |
Returs | |
cmat | |
""" | |
if isinstance(text1, str): | |
text1 = [text1] | |
if isinstance(text2, str): | |
text2 = [text2] | |
set_languages = fastlid.set_languages | |
fastlid.set_languages = ["en", "zh"] | |
if lang1 is None: | |
lang1, _ = fastlid(" ".join(text1)) | |
if lang2 is None: | |
lang2, _ = fastlid(" ".join(text2)) | |
# restore fastlid.set_languages | |
fastlid.set_languages = set_languages | |
# en2zh_tokens | |
def zh_tokens(textzh): | |
return [insert_spaces(elm).split() for elm in textzh] | |
if lang1 in ["zh"] and lang2 in ["en"]: | |
vec1 = zh_tokens(text1) | |
vec2 = en2zh_tokens(text2) | |
elif lang1 in ["zh"] and lang2 in ["zh"]: | |
vec1 = zh_tokens(text1) | |
vec2 = zh_tokens(text2) | |
elif lang1 in ["en"] and lang2 in ["en"]: | |
vec1 = en2zh_tokens(text1) | |
vec2 = en2zh_tokens(text2) | |
# if lang1 in ["en"] and lang2 in ["zh"]: | |
else: | |
vec1 = en2zh_tokens(text1) | |
vec2 = zh_tokens(text2) | |
if model is None: | |
model = gen_model(vec1) | |
cmat = smatrix( | |
vec1, | |
vec2, | |
model=model, | |
tf_type=tf_type, | |
idf_type=idf_type, | |
dl_type=dl_type, | |
norm=norm, | |
min_df=min_df, | |
max_df=max_df, | |
max_n_terms=max_n_terms, | |
vocabulary_terms=vocabulary_terms, | |
) | |
return np.array(cmat) | |