radiobee-dev / radiobee /text2lists.py
freemt
Update hf model model_s
7b6ee4d
raw
history blame
4.44 kB
"""Separate text to zh en lists."""
# pylint: disable=unused-import, too-many-locals, invalid-name, too-many-branches, too-many-statements,
# from typing import Tuple,
from typing import Iterable, List, Optional, Tuple, Union # noqa
import numpy as np
# from fastlid import fastlid
from polyglot.text import Detector
from logzero import logger
from radiobee.lists2cmat import lists2cmat
from radiobee.detect import detect
def text2lists(
text: Union[Iterable[str], str],
set_languages: Optional[List[str]] = None,
) -> Tuple[List[str], List[str]]:
"""Separate text to zh en lists.
Args:
text: mixed text
set_languages: no default (open-end)
use polyglot.text.Detector to pick two languages
Attributes:
cmat: correlation matrix (len(list_l) x len(list_r))
before adjusting (shifting)
offset: plus, [""] * offset + list2
minus, [""] * (-offset) + list1
Returns:
two lists, best effort alignment
"""
if not isinstance(text, str) and isinstance(text, Iterable):
try:
text = "\n".join(text)
except Exception as e:
logger.error(e)
raise
# set_languages default to ["en", "zh"]
if set_languages is None:
lang12 = [elm.code for elm in Detector(text).languages]
# set_languages = ["en", "zh"]
# set 'un' to 'en'
# set_languages = ['en' if elm in ['un'] else elm for elm in lang12[:2]]
set_languages = []
for elm in lang12[:2]:
if elm in ["un"]:
logger.warning(" Unknown language, set to en")
set_languages.append("en")
else:
set_languages.append(elm)
# fastlid.set_languages = set_languages
list1 = []
list2 = []
# lang0, _ = fastlid(text[:15000])
lang0 = detect(text, set_languages)
res = []
left = True # start with left list1
for elm in [_ for _ in text.splitlines() if _.strip()]:
# lang, _ = fastlid(elm)
lang = detect(elm, set_languages)
if lang == lang0:
res.append(elm)
else:
if left:
# list1.append("\n".join(res))
list1.extend(res)
else:
# list2.append("\n".join(res))
list2.extend(res)
left = not left
res = [elm]
lang0 = lang
# process the last
if left:
list1.extend(res)
else:
list2.extend(res)
try:
# lang1, _ = fastlid(' '.join(list1))
lang1 = detect(" ".join(list1), set_languages)
except Exception as exc:
logger.error(exc)
lang1 = "en"
try:
# lang2, _ = fastlid(' '.join(list2))
lang2 = detect(" ".join(list2), set_languages)
except Exception as exc:
logger.error(exc)
lang2 = "en"
# find offset via diagonal(k),
len1, len2 = len(list1), len(list2)
# len2, len1 = cmat.shape
# len_r, len_c = cmat.shape
# ylim, xlim = cmat.shape
ylim, xlim = len2, len1 # check
# cmat dim: len1 x len2 or ylim x xlim
cmat = lists2cmat(list1, list2, lang1, lang2)
# sq_mean_pair = [(elm, np.square(cmat.diagonal(elm)).mean()) for elm in range(2 - ylim, xlim + 1)]
# df = pd.DataFrame(sq_mean_pair, columns=['offset', 'sq_mean'])
# df.plot.scatter('offset', 'sq_mean')
# optimum_offset = df.offset[df.sq_mean.argmax()]
# equiv to np.argmax(sq_mean) - (ylim - 2)
# locate max, -ylim + 2 ...xlim: range(1 - ylim, xlim)
# sqare sum
sq_mean = [np.square(cmat.diagonal(elm)).mean() for elm in range(1 - ylim, xlim - 1)]
# tot: xlim + ylim - 1
# temp = [np.square(cmat.diagonal(elm)) for elm in range(2 - ylim, xlim + 1)]
# sq_mean = [elm.mean() if np.any(elm) else 0.0 for elm in temp]
# plt.figure()
# plt.scatter(range(1 - ylim, xlim), sq_mean)
offset = np.argmax(sq_mean) - (ylim - 1)
text2lists.cmat = cmat
text2lists.offset = offset
text2lists.lang1 = lang1
text2lists.lang2 = lang2
# shift list1 if offsset >= 0, else shift list2
if offset > -1:
# list1a = list1[:]
# list2a = [""] * offset + list2
list2 = [""] * offset + list2
else:
list1 = [""] * (-offset) + list1
# list1a = [""] * (-offset) + list1
# list2a = list2[:]
return list1, list2