Spaces:
Runtime error
Runtime error
v1
Browse files- app.py +110 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
from transformers import SamModel, SamProcessor
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load the SAM model and processor from Hugging Face
|
8 |
+
model_id = "facebook/sam-vit-huge"
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
sam = SamModel.from_pretrained(model_id).to(device)
|
12 |
+
processor = SamProcessor.from_pretrained(model_id)
|
13 |
+
|
14 |
+
def segment_rocks(image):
|
15 |
+
# Preprocess the image
|
16 |
+
inputs = processor(image, return_tensors="pt").to(device)
|
17 |
+
|
18 |
+
# Generate image embeddings
|
19 |
+
with torch.no_grad():
|
20 |
+
image_embeddings = sam.get_image_embeddings(inputs["pixel_values"])
|
21 |
+
|
22 |
+
# Generate masks
|
23 |
+
masks = []
|
24 |
+
for i in range(3): # Generate multiple masks
|
25 |
+
inputs = processor(
|
26 |
+
image,
|
27 |
+
input_points=None,
|
28 |
+
return_tensors="pt",
|
29 |
+
input_boxes=[[[0, 0, image.shape[1], image.shape[0]]]],
|
30 |
+
).to(device)
|
31 |
+
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = sam(
|
34 |
+
input_points=inputs["input_points"],
|
35 |
+
input_boxes=inputs["input_boxes"],
|
36 |
+
image_embeddings=image_embeddings,
|
37 |
+
multimask_output=True,
|
38 |
+
)
|
39 |
+
|
40 |
+
masks.extend(outputs.pred_masks.squeeze().cpu().numpy())
|
41 |
+
|
42 |
+
return masks
|
43 |
+
|
44 |
+
def compute_rock_properties(mask):
|
45 |
+
# Find contours of the mask
|
46 |
+
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
47 |
+
|
48 |
+
properties = []
|
49 |
+
for contour in contours:
|
50 |
+
# Compute area
|
51 |
+
area = cv2.contourArea(contour)
|
52 |
+
|
53 |
+
# Compute perimeter
|
54 |
+
perimeter = cv2.arcLength(contour, True)
|
55 |
+
|
56 |
+
# Compute circularity
|
57 |
+
circularity = 4 * np.pi * area / (perimeter ** 2) if perimeter > 0 else 0
|
58 |
+
|
59 |
+
# Fit an ellipse to get major and minor axes
|
60 |
+
if len(contour) >= 5:
|
61 |
+
ellipse = cv2.fitEllipse(contour)
|
62 |
+
major_axis = max(ellipse[1])
|
63 |
+
minor_axis = min(ellipse[1])
|
64 |
+
aspect_ratio = major_axis / minor_axis if minor_axis > 0 else 0
|
65 |
+
else:
|
66 |
+
major_axis = minor_axis = aspect_ratio = 0
|
67 |
+
|
68 |
+
properties.append({
|
69 |
+
'area': area,
|
70 |
+
'perimeter': perimeter,
|
71 |
+
'circularity': circularity,
|
72 |
+
'major_axis': major_axis,
|
73 |
+
'minor_axis': minor_axis,
|
74 |
+
'aspect_ratio': aspect_ratio
|
75 |
+
})
|
76 |
+
|
77 |
+
return properties
|
78 |
+
|
79 |
+
def process_image(input_image):
|
80 |
+
# Convert to RGB if needed
|
81 |
+
if input_image.shape[2] == 4: # RGBA
|
82 |
+
input_image = cv2.cvtColor(input_image, cv2.COLOR_RGBA2RGB)
|
83 |
+
elif len(input_image.shape) == 2: # Grayscale
|
84 |
+
input_image = cv2.cvtColor(input_image, cv2.COLOR_GRAY2RGB)
|
85 |
+
|
86 |
+
masks = segment_rocks(input_image)
|
87 |
+
|
88 |
+
results = []
|
89 |
+
for i, mask in enumerate(masks):
|
90 |
+
properties = compute_rock_properties(mask)
|
91 |
+
|
92 |
+
# Visualize the segmentation
|
93 |
+
masked_image = input_image.copy()
|
94 |
+
masked_image[mask] = (masked_image[mask] * 0.7 + np.array([255, 0, 0]) * 0.3).astype(np.uint8)
|
95 |
+
|
96 |
+
results.append((masked_image, f"Rock {i+1} properties: {properties}"))
|
97 |
+
|
98 |
+
return results
|
99 |
+
|
100 |
+
# Gradio interface
|
101 |
+
iface = gr.Interface(
|
102 |
+
fn=process_image,
|
103 |
+
inputs=gr.Image(type="numpy"),
|
104 |
+
outputs=[gr.Image(type="numpy"), gr.Textbox(label="Properties")] * 3,
|
105 |
+
title="Rock Segmentation using SAM",
|
106 |
+
description="Upload an image to segment rocks and compute their properties."
|
107 |
+
)
|
108 |
+
|
109 |
+
# Launch the interface
|
110 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.30.0
|
2 |
+
torch==1.9.0
|
3 |
+
torchvision==0.10.0
|
4 |
+
opencv-python==4.5.3.56
|
5 |
+
numpy==1.21.0
|
6 |
+
gradio==3.35.2
|