File size: 9,195 Bytes
a03c9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""preprocess_mir1k.py"""
import os
import shutil
import glob
import re
import json
from typing import Dict, List, Tuple
import numpy as np
from utils.audio import get_audio_file_info, load_audio_file
from utils.midi import midi2note, note_event2midi
from utils.note2event import note2note_event, mix_notes, sort_notes, validate_notes, trim_overlapping_notes
from utils.event2note import event2note_event
from utils.note_event_dataclasses import Note, NoteEvent
from utils.utils import note_event2token2note_event_sanity_check, freq_to_midi

MT3_TEST_IDS = [1, 2, 12, 13, 24, 25, 31, 38, 39]
PROGRAM_STR2NUM = {
    'vn': 40,
    'va': 41,
    'vc': 42,
    'db': 43,
    'fl': 73,
    'ob': 68,
    'cl': 71,
    'sax': 65,  # The type of sax used in the dataset is not clear. We guess it would be alto sax.
    'bn': 70,
    'tpt': 56,
    'hn': 60,  # Just annotated as horn. We guess it would be french horn, due to the pitch range.
    'tbn': 57,
    'tba': 58,
}


def delete_hidden_files(base_dir):
    for hidden_file in glob.glob(os.path.join(base_dir, '**/.*'), recursive=True):
        os.remove(hidden_file)
        print(f"Deleted: {hidden_file}")


def convert_annotation_to_notes(id, program, ann_files):
    notes = []
    for ann_file, prog in zip(ann_files, program):
        data = np.loadtxt(ann_file)
        onset = data[:, 0]
        freq = data[:, 1]
        duration = data[:, 2]

        notes_by_instr = []
        for o, f, d in zip(onset, freq, duration):
            notes_by_instr.append(
                Note(
                    is_drum=False,
                    program=prog,
                    onset=o,
                    offset=o + d,
                    pitch=freq_to_midi(f),
                    velocity=1))
        notes = mix_notes([notes, notes_by_instr], sort=True, trim_overlap=True, fix_offset=True)
    notes = sort_notes(notes)
    note_events = note2note_event(notes, sort=True)
    duration_sec = note_events[-1].time + 0.01
    return {  # notes
            'urmp_id': id,
            'program': program,
            'is_drum': [0] * len(program),
            'duration_sec': duration_sec,
            'notes': notes,
        }, {  # note_events
            'guitarset_id': id,
            'program': program,
            'is_drum': [0] * len(program),
            'duration_sec': duration_sec,
            'note_events': note_events,
        }


def create_audio_stem(audio_tracks, id, program, n_frames):
    max_length = max([len(tr) for tr in audio_tracks])
    max_length = max(max_length, n_frames)
    n_tracks = len(audio_tracks)
    audio_array = np.zeros((n_tracks, max_length), dtype=np.float16)
    for j, audio in enumerate(audio_tracks):
        audio_array[j, :len(audio)] = audio

    return {
        'urmp_id': id,
        'program': np.array(program),
        'is_drum': np.array([0] * len(program), dtype=np.int64),
        'n_frames': n_frames,  # int
        'audio_array': audio_array  # (n_tracks, n_frames)
    }


def data_bug_fix(base_dir):
    files = glob.glob(os.path.join(base_dir, '15_Surprise_tpt_tpt_tbn', '*3_tpt*.*'))
    for file in files:
        new_file = file.replace('3_tpt', '3_tbn')
        shutil.move(file, new_file)
        print(f"Renamed: {file} -> {new_file}")


def preprocess_urmp16k(data_home=os.PathLike,
                       dataset_name='urmp',
                       delete_source_files: bool = False,
                       sanity_check=True) -> None:
    """
    URMP dataset does not have official split information. We follow the split used in MT3 paper.

    About:
    - 44 pieces of classical music
    - Duet, Trio, Quartet, Quintet of strings or winds or mixed
    - Multi-stem audio 
    - MIDI file is unaligned, it is for score
    - Annotation (10ms hop) is provided.
    - There is timing issue for annotation
    - We do not use video

    Splits:
        - train: 35 files, following MT3
        - test: 9 files, follwing MT3
        - all: 44 files

    Writes:
        - {dataset_name}_{split}_file_list.json: a dictionary with the following keys:
        {
            index:
            {
                'urmp_id': urmp_id,
                'n_frames': (int),
                'stem_file': 'path/to/stem.npy',
                'mix_audio_file': 'path/to/mix.wav',
                'notes_file': 'path/to/notes.npy',
                'note_events_file': 'path/to/note_events.npy',
                'midi_file': 'path/to/midi.mid', # this is 120bpm converted midi file from note_events
                'program': List[int], #  
                'is_drum': List[int], # [0] or [1]
            }
        }
    """

    # Directory and file paths
    base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
    output_index_dir = os.path.join(data_home, 'yourmt3_indexes')
    os.makedirs(output_index_dir, exist_ok=True)

    # Databug fix
    data_bug_fix(base_dir)

    # Delete hidden files
    delete_hidden_files(base_dir)

    # Create file list for split==all
    file_list = dict()
    for dir_name in sorted(os.listdir(base_dir)):
        if dir_name.startswith('.'):
            continue
        if 'Supplementary' in dir_name:
            continue
        # urmp_id
        id = dir_name.split('_')[0]
        title = dir_name.split('_')[1]

        # program
        program_strings = dir_name.split('_')[2:]
        program = [PROGRAM_STR2NUM[p] for p in program_strings]

        # is_drum
        is_drum = [0] * len(program)

        # file paths
        stem_file = os.path.join(base_dir, dir_name, 'stem.npy')
        mix_audio_file = glob.glob(os.path.join(base_dir, dir_name, 'AuMix*.wav'))[0]
        notes_file = os.path.join(base_dir, dir_name, 'notes.npy')
        note_events_file = os.path.join(base_dir, dir_name, 'note_events.npy')
        midi_file = os.path.join(base_dir, dir_name, f'{str(id)}_120bpm_converted.mid')

        # n_frames
        fs, n_frames, n_channels = get_audio_file_info(mix_audio_file)
        assert fs == 16000 and n_channels == 1

        # Fill out a file list
        file_list[id] = {
            'urmp_id': id,
            'n_frames': n_frames,
            'stem_file': stem_file,
            'mix_audio_file': mix_audio_file,
            'notes_file': notes_file,
            'note_events_file': note_events_file,
            'midi_file': midi_file,
            'program': program,
            'is_drum': is_drum,
        }

        # Process Annotations
        ann_files = [
            os.path.join(base_dir, dir_name, f'Notes_{i+1}_{p}_{str(id)}_{title}.txt')
            for i, p in enumerate(program_strings)
        ]

        # Check if all files exist
        for ann_file in ann_files:
            assert os.path.exists(ann_file), f"{ann_file} does not exist."
        assert len(program) == len(ann_files)

        # Create and save notes and note_events from annotation
        notes, note_events = convert_annotation_to_notes(id, program, ann_files)
        np.save(notes_file, notes, allow_pickle=True, fix_imports=False)
        print(f'Created {notes_file}')
        np.save(note_events_file, note_events, allow_pickle=True, fix_imports=False)
        print(f'Created {note_events_file}')

        # Create 120bpm MIDI file from note_events
        note_event2midi(note_events['note_events'], midi_file)
        print(f'Created {midi_file}')

        # Process Audio
        audio_tracks = []
        for i, p in enumerate(program_strings):
            audio_sep_file = os.path.join(base_dir, dir_name, f'AuSep_{i+1}_{p}_{id}_{title}.wav')
            audio_track = load_audio_file(audio_sep_file, dtype=np.int16) / 2**15  # returns bytes
            audio_tracks.append(audio_track.astype(np.float16))
            if delete_source_files:
                os.remove(audio_sep_file)

        stem_content = create_audio_stem(audio_tracks, id, program, n_frames)
        np.save(stem_file, stem_content, allow_pickle=True, fix_imports=False)
        print(f'Created {stem_file}')

        # Sanity check
        if sanity_check:
            recon_notes, _ = midi2note(midi_file)
            recon_note_events = note2note_event(recon_notes)
            note_event2token2note_event_sanity_check(recon_note_events, notes['notes'])

        # File existence check
        assert os.path.exists(mix_audio_file)

    # Create index for splits
    file_list_all = {}
    for i, key in enumerate(file_list.keys()):
        file_list_all[i] = file_list[key]

    file_list_train = {}
    i = 0
    for key in file_list.keys():
        if int(key) not in MT3_TEST_IDS:
            file_list_train[i] = file_list[key]
            i += 1

    file_list_test = {}
    i = 0
    for key in file_list.keys():
        if int(key) in MT3_TEST_IDS:
            file_list_test[i] = file_list[key]
            i += 1

    all_fl = {'all': file_list_all, 'train': file_list_train, 'test': file_list_test}

    # Save index
    for split in ['all', 'train', 'test']:
        output_index_file = os.path.join(output_index_dir, f'{dataset_name}_{split}_file_list.json')
        with open(output_index_file, 'w') as f:
            json.dump(all_fl[split], f, indent=4)
        print(f'Created {output_index_file}')