File size: 24,312 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
"""pitchshift.py"""
# import math
import numpy as np
# from scipy import special
from einops import rearrange
from typing import Optional, Literal, Dict, List, Tuple, Callable
import torch
from torch import nn
import torchaudio
from torchaudio import transforms
# from torchaudio import functional as F
# from torchaudio.functional.functional import (
# _fix_waveform_shape,
# _stretch_waveform,
# )
# from model.ops import adjust_b_to_gcd, check_all_elements_equal
class PitchShiftLayer(nn.Module):
"""Applying batch-wise pitch-shift to time-domain audio signals.
Args:
pshift_range (List[int]): Range of pitch shift in semitones. Default: ``[-2, 2]``.
resample_source_fs (int): Default is 4000.
stretch_n_fft (int): Default is 2048.
window: (Optional[Literal['kaiser']]) Default is None.
beta: (Optional[float]): Parameter for 'kaiser' filter. Default: None.
"""
def __init__(
self,
pshift_range: List[int] = [-2, 2],
resample_source_fs: int = 4000,
strecth_n_fft: int = 512,
win_length: Optional[int] = None,
hop_length: Optional[int] = None,
window: Optional[Literal['kaiser']] = None,
beta: Optional[float] = None,
expected_input_shape: Optional[Tuple[int]] = None,
device: Optional[torch.device] = None,
**kwargs,
) -> None:
super().__init__()
self.pshift_range = pshift_range
self.resample_source_fs = resample_source_fs
self.strecth_n_fft = strecth_n_fft
self.win_length = win_length
self.hop_length = hop_length
if window is None:
self.window_fn = torch.hann_window
self.window_kwargs = None
elif 'kaiser' in window:
def custom_kaiser_window(window_length, beta, **kwargs):
return torch.kaiser_window(window_length, periodic=True, beta=beta, **kwargs)
self.window_fn = custom_kaiser_window
self.window_kwargs = {'beta': beta}
# Initialize pitch shifters for every semitone
self.pshifters = None
self.frame_gaps = None
self._initialize_pshifters(expected_input_shape, device=device)
self.requires_grad_(False)
def _initialize_pshifters(self,
expected_input_shape: Optional[Tuple[int]] = None,
device: Optional[torch.device] = None) -> None:
# DDP requires initializing parameters with a dummy input
if expected_input_shape is not None:
if device is not None:
dummy_input = torch.randn(expected_input_shape, requires_grad=False).to(device)
else:
dummy_input = torch.randn(expected_input_shape, requires_grad=False)
else:
dummy_input = None
pshifters = nn.ModuleDict()
for semitone in range(self.pshift_range[0], self.pshift_range[1] + 1):
if semitone == 0:
# No need to shift and resample
pshifters[str(semitone)] = None
else:
pshifter = transforms.PitchShift(self.resample_source_fs,
n_steps=semitone,
n_fft=self.strecth_n_fft,
win_length=self.win_length,
hop_length=self.hop_length,
window_fn=self.window_fn,
wkwargs=self.window_kwargs)
pshifters[str(semitone)] = pshifter
# Pass dummy input to initialize parameters
with torch.no_grad():
if dummy_input is not None:
_ = pshifter.initialize_parameters(dummy_input)
self.pshifters = pshifters
def calculate_frame_gaps(self) -> Dict[int, float]:
"""Calculate the expected gap between the original and the stretched audio."""
frame_gaps = {} # for debugging
for semitone in range(self.pshift_range[0], self.pshift_range[1] + 1):
if semitone == 0:
# No need to shift and resample
frame_gaps[semitone] = 0.
else:
pshifter = self.pshifters[str(semitone)]
gap_in_ms = 1000. * (pshifter.kernel.shape[2] -
pshifter.kernel.shape[0] / 2.0**(-float(semitone) / 12)) / self.resample_source_fs
frame_gaps[semitone] = gap_in_ms
return frame_gaps
@torch.no_grad()
def forward(self, x: torch.Tensor, semitone: int) -> torch.Tensor:
"""
Args:
x (torch.Tensor): (B, 1, T) or (B, T)
Returns:
torch.Tensor: (B, 1, T) or (B, T)
"""
if semitone == 0:
return x
elif semitone >= min(self.pshift_range) and semitone <= max(self.pshift_range):
return self.pshifters[str(semitone)](x)
else:
raise ValueError(f"semitone must be in range {self.pshift_range}")
def test_resampler_sinewave():
# x: {440Hz, 220Hz} sine wave at 16kHz
t = torch.arange(0, 2, 1 / 16000) # 2 seconds at 16kHz
x0 = torch.sin(2 * torch.pi * 440 * t) * 0.5
x1 = torch.sin(2 * torch.pi * 220 * t) * 0.5
x = torch.stack((x0, x1), dim=0) # (2, 32000)
# Resample
psl = PitchShiftLayer(pshift_range=[-2, 2], resample_source_fs=4000)
y = psl(x, 2) # (2, 24000)
# Export to wav
torchaudio.save("x.wav", x, 16000, bits_per_sample=16)
torchaudio.save("y.wav", y, 12000, bits_per_sample=16)
# class Resampler(nn.Module):
# """
# Resampling using conv1d operations, more memory-efficient than torchaudio's resampler.
# Based on Dan Povey's resampler.py:
# https://github.com/danpovey/filtering/blob/master/lilfilter/resampler.py
# """
# def __init__(self,
# input_sr: int,
# output_sr: int,
# dtype: torch.dtype = torch.float32,
# filter_width: int = 16,
# cutoff_ratio: float = 0.85,
# filter: Literal['kaiser', 'kaiser_best', 'kaiser_fast', 'hann'] = 'kaiser_fast',
# beta: float = 8.555504641634386) -> None:
# super().__init__() # init the base class
# """
# Initialize the Resampler.
# Args:
# - input_sr (int): Input sampling rate.
# - output_sr (int): Output sampling rate.
# - dtype (torch.dtype): Computation data type. Default: torch.float32.
# - filter_width (int): Number of zeros per side in the sinc function. Default: 16.
# - cutoff_ratio (float): Filter rolloff point as a fraction of Nyquist freq. Default: 0.95.
# - filter (str): Filter type. One of ['kaiser', 'kaiser_best', 'kaiser_fast', 'hann']. Default: 'kaiser_fast'.
# - beta (float): Parameter for 'kaiser' filter. Default: 8.555504641634386.
# Note: Ratio between input_sr and output_sr should be reduced to simplest form.
# """
# assert isinstance(input_sr, int) and isinstance(output_sr, int)
# if input_sr == output_sr:
# self.resample_type = 'trivial'
# return
# d = math.gcd(input_sr, output_sr)
# input_sr, output_sr = input_sr // d, output_sr // d
# assert dtype in [torch.float32, torch.float64]
# assert filter_width > 3 # a reasonable bare minimum
# np_dtype = np.float32 if dtype == torch.float32 else np.float64
# assert filter in ['hann', 'kaiser', 'kaiser_best', 'kaiser_fast']
# if filter == 'kaiser_best':
# filter_width = 64
# beta = 14.769656459379492
# cutoff_ratio = 0.9475937167399596
# filter = 'kaiser'
# elif filter == 'kaiser_fast':
# filter_width = 16
# beta = 8.555504641634386
# cutoff_ratio = 0.85
# filter = 'kaiser'
# """
# - Define a sample 'block' correlating `input_sr` input samples to `output_sr` output samples.
# - Dividing samples into these blocks allows corresponding block alignment.
# - On average, `zeros_per_block` zeros per block are present in the sinc function.
# """
# zeros_per_block = min(input_sr, output_sr) * cutoff_ratio
# """
# - Define conv kernel size n = (blocks_per_side*2 + 1), adding blocks to each side of the center.
# - `blocks_per_side` blocks as window radius ensures each central block sample accesses its window.
# - `blocks_per_side` is determined, rounding up if needed, as 1 + int(filter_width / zeros_per_block).
# """
# blocks_per_side = int(np.ceil(filter_width / zeros_per_block))
# kernel_width = 2 * blocks_per_side + 1
# # Shape of conv1d weights: (out_channels, in_channels, kernel_width)
# """ Time computations are in units of 1 block, aligning with the `canonical` time axis,
# since each block has input_sr input samples, adhering to our time unit."""
# window_radius_in_blocks = blocks_per_side
# """`times` will be sinc function arguments, expanding to shape (output_sr, input_sr, kernel_width)
# via broadcasting. Ensuring t == 0 along the central block diagonal (when input_sr == output_sr)"""
# times = (
# np.arange(output_sr, dtype=np_dtype).reshape(
# (output_sr, 1, 1)) / output_sr - np.arange(input_sr, dtype=np_dtype).reshape(
# (1, input_sr, 1)) / input_sr - (np.arange(kernel_width, dtype=np_dtype).reshape(
# (1, 1, kernel_width)) - blocks_per_side))
# def hann_window(a):
# """
# returning 0.5 + 0.5 cos(a*pi) on [-1,1] and 0 outside.
# """
# return np.heaviside(1 - np.abs(a), 0.0) * (0.5 + 0.5 * np.cos(a * np.pi))
# def kaiser_window(a, beta):
# w = special.i0(beta * np.sqrt(np.clip(1 - (
# (a - 0.0) / 1.0)**2.0, 0.0, 1.0))) / special.i0(beta)
# return np.heaviside(1 - np.abs(a), 0.0) * w
# """The weights are computed as a sinc function times a Hann-window function, normalized by
# `zeros_per_block` (sinc) and `input_sr` (input function) to maintain integral and magnitude."""
# if filter == 'hann':
# weights = (
# np.sinc(times * zeros_per_block) * hann_window(times / window_radius_in_blocks) *
# zeros_per_block / input_sr)
# else:
# weights = (
# np.sinc(times * zeros_per_block) *
# kaiser_window(times / window_radius_in_blocks, beta) * zeros_per_block / input_sr)
# self.input_sr = input_sr
# self.output_sr = output_sr
# """If output_sr == 1, merge input_sr into kernel_width for weights (shape: output_sr, input_sr,
# kernel_width) to optimize convolution speed and avoid extra reshaping."""
# assert weights.shape == (output_sr, input_sr, kernel_width)
# if output_sr == 1:
# self.resample_type = 'integer_downsample'
# self.padding = input_sr * blocks_per_side
# weights = torch.tensor(weights, dtype=dtype, requires_grad=False)
# weights = weights.transpose(1, 2).contiguous().view(1, 1, input_sr * kernel_width)
# elif input_sr == 1:
# # For conv_transpose, use weights as if input_sr and output_sr were swapped, simulating downsampling.
# self.resample_type = 'integer_upsample'
# self.padding = output_sr * blocks_per_side
# weights = torch.tensor(weights, dtype=dtype, requires_grad=False)
# weights = weights.flip(2).transpose(0,
# 2).contiguous().view(1, 1, output_sr * kernel_width)
# else:
# self.resample_type = 'general'
# self.reshaped = False
# self.padding = blocks_per_side
# weights = torch.tensor(weights, dtype=dtype, requires_grad=False)
# self.weights = torch.nn.Parameter(weights, requires_grad=False)
# @torch.no_grad()
# def forward(self, x: torch.Tensor) -> torch.Tensor:
# """
# Parameters:
# - x: torch.Tensor, with shape (minibatch_size, sequence_length), dtype should match the instance's dtype.
# Returns:
# - A torch.Tensor with shape (minibatch_size, (sequence_length//input_sr)*output_sr), dtype matching the input,
# and content resampled.
# """
# if self.resample_type == 'trivial':
# return x
# elif self.resample_type == 'integer_downsample':
# (minibatch_size, seq_len) = x.shape # (B, in_C, L) with in_C == 1
# x = x.unsqueeze(1)
# x = torch.nn.functional.conv1d(
# x, self.weights, stride=self.input_sr, padding=self.padding) # (B, out_C, L)
# return x.squeeze(1) # (B, L)
# elif self.resample_type == 'integer_upsample':
# x = x.unsqueeze(1)
# x = torch.nn.functional.conv_transpose1d(
# x, self.weights, stride=self.output_sr, padding=self.padding)
# return x.squeeze(1)
# else:
# assert self.resample_type == 'general'
# (minibatch_size, seq_len) = x.shape
# num_blocks = seq_len // self.input_sr
# if num_blocks == 0:
# # TODO: pad with zeros.
# raise RuntimeError("Signal is too short to resample")
# # Truncate input
# x = x[:, 0:(num_blocks * self.input_sr)].view(minibatch_size, num_blocks, self.input_sr)
# x = x.transpose(1, 2) # (B, in_C, L)
# x = torch.nn.functional.conv1d(
# x, self.weights, padding=self.padding) # (B, out_C, num_blocks)
# return x.transpose(1, 2).contiguous().view(minibatch_size, num_blocks * self.output_sr)
# def test_resampler_sinewave():
# import torchaudio
# # x: {440Hz, 220Hz} sine wave at 16kHz
# t = torch.arange(0, 2, 1 / 16000) # 2 seconds at 16kHz
# x0 = torch.sin(2 * torch.pi * 440 * t) * 0.5
# x1 = torch.sin(2 * torch.pi * 220 * t) * 0.5
# x = torch.stack((x0, x1), dim=0) # (2, 32000)
# # Resample
# resampler = Resampler(input_sr=16000, output_sr=12000)
# y = resampler(x) # (2, 24000)
# # Export to wav
# torchaudio.save("x.wav", x, 16000, bits_per_sample=16)
# torchaudio.save("y.wav", y, 12000, bits_per_sample=16)
# def test_resampler_music():
# import torchaudio
# # x: music at 16kHz
# x, _ = torchaudio.load("music.wav")
# slice_length = 32000
# n_slices = 80
# slices = [x[0, i * slice_length:(i + 1) * slice_length] for i in range(n_slices)]
# x = torch.stack(slices) # (80, 32000)
# # Resample
# filter_width = 32
# resampler = Resampler(16000, 12000, filter_width=filter_width)
# y = resampler(x) # (80, 24000)
# y = y.reshape(1, -1) # (1, 1920000)
# torchaudio.save(f"y_filter_width{filter_width}.wav", y, 12000, bits_per_sample=16)
# class PitchShiftLayer(nn.Module):
# """Applying batch-wise pitch-shift to time-domain audio signals.
# Args:
# expected_input_length (int): Expected input length. Default: ``32767``.
# pshift_range (List[int]): Range of pitch shift in semitones. Default: ``[-2, 2]``.
# min_gcd (int): Minimum GCD of input and output sampling rates for resampling. Setting high value can save GPU memory. Default: ``16``.
# max_timing_error (float): Maximum allowed timing error in seconds. Default: ``0.002``.
# fs (int): Sample rate of input waveform, x. Default: 16000.
# bins_per_octave (int, optional): The number of steps per octave (Default : ``12``).
# n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins (Default: ``512``).
# win_length (int or None, optional): Window size. If None, then ``n_fft`` is used. (Default: ``None``).
# hop_length (int or None, optional): Length of hop between STFT windows. If None, then ``win_length // 4``
# is used (Default: ``None``).
# window (Tensor or None, optional): Window tensor that is applied/multiplied to each frame/window.
# If None, then ``torch.hann_window(win_length)`` is used (Default: ``None``).
# """
# def __init__(
# self,
# expected_input_length: int = 32767,
# pshift_range: List[int] = [-2, 2],
# min_gcd: int = 16,
# max_timing_error: float = 0.002,
# fs: int = 16000,
# bins_per_octave: int = 12,
# n_fft: int = 2048,
# win_length: Optional[int] = None,
# hop_length: Optional[int] = None,
# window: Optional[torch.Tensor] = None,
# filter_width: int = 16,
# filter: Literal['kaiser', 'kaiser_best', 'kaiser_fast', 'hann'] = 'kaiser_fast',
# cutoff_ratio: float = 0.85,
# beta: float = 8.555504641634386,
# **kwargs,
# ):
# super().__init__()
# self.expected_input_length = expected_input_length
# self.pshift_range = pshift_range
# self.min_gcd = min_gcd
# self.max_timing_error = max_timing_error
# self.fs = fs
# self.bins_per_octave = bins_per_octave
# self.n_fft = n_fft
# self.win_length = win_length
# self.hop_length = hop_length
# self.window = window
# self.resample_args = {
# "filter_width": filter_width,
# "filter": filter,
# "cutoff_ratio": cutoff_ratio,
# "beta": beta,
# }
# # Initialize Resamplers
# self._initialize_resamplers()
# def _initialize_resamplers(self):
# resamplers = nn.ModuleDict()
# self.frame_gaps = {} # for debugging
# for i in range(self.pshift_range[0], self.pshift_range[1] + 1):
# if i == 0:
# # No need to shift and resample
# resamplers[str(i)] = None
# else:
# # Find optimal reconversion frames meeting the min_gcd
# stretched_frames, recon_frames, gap = self._find_optimal_reconversion_frames(i)
# self.frame_gaps[i] = gap
# resamplers[str(i)] = Resampler(stretched_frames, recon_frames, **self.resample_args)
# self.resamplers = resamplers
# def _find_optimal_reconversion_frames(self, semitone: int):
# """
# Find the optimal reconversion frames for a given source sample rate, input length, and semitone for strech.
# Parameters:
# - sr (int): Input audio sample rate, which should be power of 2
# - n_step (int): The number of pitch-shift steps in semi-tone.
# - min_gcd (int): The minimum desired GCD, power of 2. Defaults to 16. 16 or 32 are good choices.
# - max_timing_error (float): The maximum allowed timing error, in seconds. Defaults to 5 ms
# Returns:
# - int: The optimal target sample rate
# """
# stretch_rate = 1 / 2.0**(-float(semitone) / self.bins_per_octave)
# stretched_frames = round(self.expected_input_length * stretch_rate)
# gcd = math.gcd(self.expected_input_length, stretched_frames)
# if gcd >= self.min_gcd:
# return stretched_frames, self.expected_input_length, 0
# else:
# reconversion_frames = adjust_b_to_gcd(stretched_frames, self.expected_input_length,
# self.min_gcd)
# gap = reconversion_frames - self.expected_input_length
# gap_sec = gap / self.fs
# if gap_sec > self.max_timing_error:
# # TODO: modifying vocoder of stretch_waveform to adjust pitch-shift rate in cents
# raise ValueError(
# gap_sec < self.max_timing_error,
# f"gap_sec={gap_sec} > max_timing_error={self.max_timing_error} with semitone={semitone}, stretched_frames={stretched_frames}, recon_frames={reconversion_frames}. Try adjusting input lenght or decreasing min_gcd."
# )
# else:
# return stretched_frames, reconversion_frames, gap_sec
# @torch.no_grad()
# def forward(self,
# x: torch.Tensor,
# semitone: int,
# resample: bool = True,
# fix_shape: bool = True) -> torch.Tensor:
# """
# Args:
# x (torch.Tensor): (B, 1, T)
# Returns:
# torch.Tensor: (B, 1, T)
# """
# if semitone == 0:
# return x
# elif semitone >= min(self.pshift_range) and semitone <= max(self.pshift_range):
# x = x.squeeze(1) # (B, T)
# original_x_size = x.size()
# x = _stretch_waveform(
# x,
# semitone,
# self.bins_per_octave,
# self.n_fft,
# self.win_length,
# self.hop_length,
# self.window,
# )
# if resample:
# x = self.resamplers[str(semitone)].forward(x)
# # Fix waveform shape
# if fix_shape:
# if x.size(1) != original_x_size[1]:
# # print(f"Warning: {x.size(1)} != {original_x_length}")
# x = _fix_waveform_shape(x, original_x_size)
# return x.unsqueeze(1) # (B, 1, T)
# else:
# raise ValueError(f"semitone must be in range {self.pshift_range}")
# def test_pitchshift_layer():
# import torchaudio
# # music
# # x, _ = torchaudio.load("music.wav")
# # slice_length = 32767
# # n_slices = 80
# # slices = [x[0, i * slice_length:(i + 1) * slice_length] for i in range(n_slices)]
# # x = torch.stack(slices).unsqueeze(1) # (80, 1, 32767)
# # sine wave
# t = torch.arange(0, 2.0479, 1 / 16000) # 2.05 seconds at 16kHz
# x = torch.sin(2 * torch.pi * 440 * t) * 0.5
# x = x.reshape(1, 1, 32767).tile(80, 1, 1)
# # Resample
# pos = 0
# ps = PitchShiftLayer(
# pshift_range=[-3, 4],
# expected_input_length=32767,
# fs=16000,
# min_gcd=16,
# max_timing_error=0.002,
# # filter_width=64,
# filter='kaiser_fast',
# n_fft=2048)
# y = []
# for i in range(-3, 4):
# y.append(ps(x[[pos], :, :], i, resample=False, fix_shape=False)[0, 0, :])
# y = torch.cat(y).unsqueeze(0) # (1, 32767 * 7)
# torchaudio.save("y_2048_kaiser_fast.wav", y, 16000, bits_per_sample=16)
# # TorchAudio PitchShifter fopr comparision
# y_ta = []
# for i in range(-3, 4):
# ta_transform = torchaudio.transforms.PitchShift(16000, n_steps=i)
# y_ta.append(ta_transform(x[[pos], :, :])[0, 0, :])
# y_ta = torch.cat(y_ta).unsqueeze(0) # (1, 32767 * 7)
# torchaudio.save("y_ta.wav", y_ta, 16000, bits_per_sample=16)
# def test_min_gcd_mem_usage():
# min_gcd = 16
# for i in range(-3, 4):
# stretched_frames = _stretch_waveform(x, i).shape[1]
# adjusted = adjust_b_to_gcd(stretched_frames, 32767, min_gcd)
# gcd_val = math.gcd(adjusted, stretched_frames)
# gap = adjusted - 32767
# gap_ms = (gap / 16000) * 1000
# mem_mb = (stretched_frames / gcd_val) * (adjusted / gcd_val) * 3 * 4 / 1000 / 1000
# print(f'\033[92mmin_gcd={min_gcd}\033[0m', f'ps={i}', f'frames={stretched_frames}',
# f'adjusted_frames={adjusted}', f'gap={gap}', f'\033[91mgap_ms={gap_ms}\033[0m',
# f'gcd={gcd_val}', f'mem_MB={mem_mb}')
|