File size: 8,182 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
"""spectrogram.py"""
import importlib
from typing import Optional, Literal, Dict, Tuple
from packaging.version import parse as VersionParse
import torch
import torch.nn as nn
from einops import rearrange
from model.ops import minmax_normalize
from config.config import audio_cfg as default_audio_cfg
"""
Example usage:
# MT3 setup
>>> hop = 8 ms or 128 samples
>>> melspec = Melspectrogram(sample_rate=16000, n_fft=2048, hop_length=128,
f_min=50, f_max=8000, n_mels=512)
>>> x = torch.randn(2, 1, 32767) # (B, C=1, T): 2.048 s
>>> y = melspec(x) # (2, 256, 512) (B, T, F)
# PerceiverTF-like setup
>>> hop = 18.75 ms or 300 samples
>>> spec = Spectrogram(n_fft=2048, hop_length=300)
)
>>> x = torch.randn(2, 1, 95999) # (B, C=1, T): 6.000 s
>>> y = spec(x) # (2, 320, 1024) (B, T, F)
# Hybrid setup (2.048 seconds segment and spectrogram with hop=300)
>>> hop = 18.75 ms or 300 samples
>>> spec = Spectrogram(n_fft=2048, hop_length=300)
>>> x = torch.randn(2, 1, 32767) # (B, C=1, T): 2.048 s
>>> y = spec(x) # (2, 110, 1024) (B, T, F)
# PerceiverTF-like setup, hop=256
>>> hop = 16 ms or 256 samples
>>> spec256 = Spectrogram(sample_rate=16000, n_fft=2048, hop_length=256,
f_min=20, f_max=8000, n_mels=256)
>>> x = torch.randn(2, 1, 32767) # (B, C=1, T): 2.048 s
>>> y = spec256(x) # (2, 128, 1024) (B, T, F)
"""
def optional_compiler_disable(func):
if VersionParse(torch.__version__) >= VersionParse("2.1"):
# If the version is 2.1 or higher, apply the torch.compiler.disable decorator.
return torch.compiler.disable(func)
else:
# If the version is below 2.1, return the original function.
return func
# -------------------------------------------------------------------------------------
# Log-Mel spectrogram
# -------------------------------------------------------------------------------------
class Melspectrogram(nn.Module):
def __init__(
self,
audio_backend: Literal['torchaudio', 'nnaudio'] = 'torchaudio',
sample_rate: int = 16000,
n_fft: int = 2048,
hop_length: int = 128,
f_min: int = 50, # 20 Hz in the MT3 paper, but we can only use 20 Hz with nnAudio
f_max: Optional[int] = 8000,
n_mels: int = 512,
eps: float = 1e-5,
**kwargs,
):
"""
Log-Melspectrogram
Args:
audio_backend (str): 'torchaudio' or 'nnaudio'
sample_rate (int): sample rate in Hz
n_fft (int): FFT window size
hop_length (int): hop length in samples
f_min (int): minimum frequency in Hz
f_max (int): maximum frequency in Hz
n_mels (int): number of mel frequency bins
eps (float): epsilon for numerical stability
"""
super(Melspectrogram, self).__init__()
self.audio_backend = audio_backend.lower()
if audio_backend.lower() == 'torchaudio':
torchaudio = importlib.import_module('torchaudio')
self.mel_stft = torchaudio.transforms.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
f_min=f_min,
f_max=f_max,
n_mels=n_mels,
)
elif audio_backend.lower() == 'nnaudio':
nnaudio = importlib.import_module('nnAudio.features')
self.mel_stft_nnaudio = nnaudio.mel.MelSpectrogram(
sr=sample_rate,
win_length=n_fft,
n_mels=n_mels,
hop_length=hop_length,
fmin=20, #f_min,
fmax=f_max)
else:
raise NotImplementedError(audio_backend)
self.eps = eps
@optional_compiler_disable
def forward(self, x: torch.Tensor) -> torch.Tensor: # (B, 1, T)
"""
Args:
x (torch.Tensor): (B, 1, T)
Returns:
torch.Tensor: (B, T, F)
"""
if self.audio_backend == 'torchaudio':
x = self.mel_stft(x) # (B, 1, F, T)
x = rearrange(x, 'b 1 f t -> b t f')
x = minmax_normalize(torch.log(x + self.eps))
# some versions of torchaudio returns nan when input is all-zeros
return torch.nan_to_num(x)
elif self.audio_backend == 'nnaudio':
x = self.mel_stft_nnaudio(x) # (B, F, T)
x = rearrange(x, 'b f t -> b t f')
x = minmax_normalize(torch.log(x + self.eps))
return x
# -------------------------------------------------------------------------------------
# Log-spectrogram
# -------------------------------------------------------------------------------------
class Spectrogram(nn.Module):
def __init__(
self,
audio_backend: Literal['torchaudio', 'nnaudio'] = 'torchaudio',
n_fft: int = 2048,
hop_length: int = 128,
eps: float = 1e-5,
**kwargs,
):
"""
Log-Magnitude Spectrogram
Args:
audio_backend (str): 'torchaudio' or 'nnaudio'
n_fft (int): FFT window size, creates n_fft // 2 + 1 freq-bins
hop_length (int): hop length in samples
eps (float): epsilon for numerical stability
"""
super(Spectrogram, self).__init__()
self.audio_backend = audio_backend.lower()
if audio_backend.lower() == 'torchaudio':
torchaudio = importlib.import_module('torchaudio')
self.stft = torchaudio.transforms.Spectrogram(n_fft=n_fft,
hop_length=hop_length,
window_fn=torch.hann_window,
power=1.) # (B, 1, F, T), remove DC component
elif audio_backend.lower() == 'nnaudio':
# TODO: nnAudio spectrogram
raise NotImplementedError(audio_backend)
else:
raise NotImplementedError(audio_backend)
self.eps = eps
@optional_compiler_disable
def forward(self, x: torch.Tensor) -> torch.Tensor: # (B, 1, T)
"""
Args:
x (torch.Tensor): (B, 1, T)
Returns:
torch.Tensor: (B, T, F)
"""
if self.audio_backend == 'torchaudio':
x = self.stft(x)[:, :, 1:, :] # (B, 1, F, T) remove DC component
x = rearrange(x, 'b 1 f t -> b t f')
x = minmax_normalize(torch.log(x + self.eps))
return torch.nan_to_num(x) # some versions of torchaudio returns nan when input is all-zeros
elif self.audio_backend == 'nnaudio':
raise NotImplementedError(self.audio_backend)
def get_spectrogram_layer_from_audio_cfg(audio_cfg: Optional[Dict] = None) -> Tuple[nn.Module, Tuple[int]]:
"""Get mel-/spectrogram layer from config.
- Used by 'ymt3' to create a spectrogram layer.
- Returns output shape of spectrogram layer, which is used to determine input shape of model.
Args:
audio_cfg (dict): see config/config.py
Returns:
layer (nn.Module): mel-/spectrogram layer
output_shape (tuple): inferred output shape of layer excluding batch dim. (T, F)
"""
if audio_cfg is None:
audio_cfg = default_audio_cfg
if audio_cfg['codec'] == 'melspec':
layer = Melspectrogram(**audio_cfg)
elif audio_cfg['codec'] == 'spec':
layer = Spectrogram(**audio_cfg)
else:
raise NotImplementedError(audio_cfg['codec'])
# Infer output shape of the spectrogram layer
with torch.no_grad():
output_shape = layer(torch.randn(1, 1, audio_cfg['input_frames'])).shape[1:]
return layer, output_shape
|