File size: 13,438 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
"""config.py"""
import numpy as np
# yapf: disable
"""
audio_cfg:
- Used by 'ymt3' to create a spectrogram layer.
- Input shape of model is determined by audio_cfg.
- 'train.py' arguments can override these defaults.
"""
audio_cfg = {
# Overwrittable by args in train.py
"codec": "melspec", # {melspec, spec} melspec for MT3, spec for PerceiverTF
"hop_length": 128, # {128, 300} 128 for MT3, 300 for PerceiverTF
# Shared audio parameters
"audio_backend": "torchaudio", # {torchaudio, nnAudio}
"sample_rate": 16000,
"input_frames": 32767, # number of input frames (~=2.048 s), determining in-/output shape of front layers.
"n_fft": 2048,
"n_mels": 512, # only for melspec
"f_min": 50.0,
"f_max": 8000.0,
} # TODO: currently dataloader is not updated by "input_frames"
"""
model_cfg:
- Encoder type dictates use of T5_CFG or PERCEIVER_TF_CFG.
- 'train.py' arguments can override these defaults.
"""
model_cfg = {
"encoder_type": "t5", # {"t5", "perceiver-tf", "conformer"}
"decoder_type": "t5", # {"t5", "multi-t5"}
"pre_encoder_type": "default", # {None, "default", "conv", "conv1d", "conv2d_avpt"} by default, t5:None, perceiver:conv.
"pre_encoder_type_default": {"t5": None, "perceiver-tf": "conv", "conformer": None},
"pre_decoder_type": "default", # {None, 'linear', 'conv1', 'mlp', 'group_linear'} see model/projection_layer.py
"pre_decoder_type_default": { # [enc_type][dec_type]
"t5": {"t5": None,},
"perceiver-tf": {"t5": "linear", "multi-t5": "mc_shared_linear"},
"conformer": {"t5": None,},
},
"conv_out_channels": 128, # number of filters for 'conv' pre_encoder. Otherwise ignored.
"t5_basename": "google/t5-v1_1-small",
"pretrained": False, # bool, if True, load pretrained weights from t5_basename. Mismatched layers are ignored.
"use_task_conditional_encoder": True, # True by default, but default task is None. So not activated by default.
"use_task_conditional_decoder": True, # True by default, but default task is None. So not activated by default.
"d_feat": "auto", # Input audio feature dimension for encoder. Automatically inferred by audio_cfg and existence of pre_encoders.
"tie_word_embeddings": True, # If True, weights of embed_tokens and lm_head are tied for stabilizing gradients.
"vocab_size": "auto", # int or "auto", automatically inferred by task manager.
"num_max_positions": "auto", # int or "auto". Length of positional encoding. Automatically inferred by "feat_length", "event_length" and task_manager.max_task_token_length.
# 'vocab_size', 'tie_word_embeddings' and 'num_max_positions' are auto-copied to encoder and decoder configs in the below.
"encoder": {
"t5": {
"d_model": 512, # Hidden size of T5 encoder.
"num_heads": 6,
"num_layers": 8,
"dropout_rate": 0.05,
"position_encoding_type": "sinusoidal", # {'sinusoidal', 'trainable'}.
"ff_widening_factor": 2, # wideening factor for MLP/MoE layers. Default is 2 in T5.
"ff_layer_type": "t5_gmlp", # {'t5_gmlp', 'moe', 'mlp', 'gmlp'}. 'moe' for mixture of experts, 'mlp' for standard transformer dense layer, 'gmlp' for simple gated MLP.
},
"perceiver-tf": {
"num_latents": 24, # number of latents in Perceiver. 24 in perceiver-tf paper.
"d_latent": 128, # latent dimension of Perceiver. 128 in perceiver-tf paper.
"d_model": "q", # int or "q" or "kv". Inner-dim of sca and local/temporal self-att.
# "q" follows "latent_dim". "kv" follows "d_feat". Best practice is to inc-/decrease 'd_latent', instead of 'd_model'.
"num_blocks": 3, # number of Perceiver-TF blocks in encoder. L in the paper.
"num_local_transformers_per_block": 2, # N in the paper.
"num_temporal_transformers_per_block": 2, # M in the paper.
"sca_use_query_residual": False,
"dropout_rate": 0.1,
"position_encoding_type": "trainable", # {'trainable', 'rotary', 'alibi', 'alibit', None, 'tkd','td', 'tk', 'kdt'}. alibit is alibi with trainable slopes.
"attention_to_channel": True, # Whether to use channel attention in sca.
"layer_norm_type": "layer_norm", # {'layer_norm', 'rms_norm'}
"ff_layer_type": "mlp", # {'moe', 'mlp', gmlp}. 'moe' for mixture of experts, 'mlp' for standard transformer dense layer, 'gmlp' for simple gated MLP.
"ff_widening_factor": 1, # wideening factor for MLP/MoE layers. Default is 1.
"moe_num_experts": 4, # number of experts in MoE layer. Default is 4. Disabled if ff_layer_type is not 'moe'.
"moe_topk": 2, # top-k routing in MoE layer. Default is 2. Disabled if ff_layer_type is not 'moe'.
"hidden_act": 'gelu', # activation function in MLP/MoE layer. Default is 'gelu'. {'gelu', 'silu', 'relu'}
"rotary_type_sca": "pixel", # {'l'|'lang', 'p'|'pixel'}. Default is 'pixel'.
"rotary_type_latent": "pixel", # {'l'|'lang', 'p'|'pixel'}. Default is 'pixel'.
"rotary_type_temporal": "lang", # {'l'|'lang', 'p'|'pixel'}. Default is 'lang'.
"rotary_apply_to_keys": False, # Whether to apply rotary to keys. Default is False.
"rotary_partial_pe": False, # Whether to use partial positional encoding. Default is False.
},
"conformer": {
"d_model": 512, # Hidden size of T5 encoder.
"intermediate_size": 512, # or 2048. size of the intermediate feed forward layer in each T5Block
"num_heads": 8,
"num_layers": 8,
"dropout_rate": 0.1,
"layerdrop": 0.1, # see https://arxiv.org/abs/1909.11556
"position_encoding_type": "rotary", # {'rotary', 'relative'}.
"conv_dim": (512, 512, 512, 512, 512, 512, 512),
"conv_stride": (5, 2, 2, 2, 2, 2, 2),
"conv_kernel": (10, 3, 3, 3, 3, 3, 3),
"conv_depthwise_kernel_size": 31,
},
},
"decoder": {
"t5": {
"d_model": 512, # Hidden size of T5 encoder. If encoder has lower dim, it is projected to this dim for enc-dec cross att.
"num_heads": 6,
"num_layers": 8,
"dropout_rate": 0.05,
"position_encoding_type": "sinusoidal", # {'sinusoidal', 'trainable'}.
"ff_widening_factor": 2, # wideening factor for MLP/MoE layers. Default is 2 in T5.
"ff_layer_type": "t5_gmlp", # {'t5_gmlp', 'moe', 'mlp', 'gmlp'}. 'moe' for mixture of experts, 'mlp' for standard transformer dense layer, 'gmlp' for simple gated MLP.
},
"multi-t5": {
"d_model": 512, # Hidden size of T5 encoder. Recommended: {256 or 512}
"num_heads": 6,
"num_layers": 8,
"dropout_rate": 0.05,
"position_encoding_type": "sinusoidal", # {'sinusoidal', 'trainable'}.
"ff_widening_factor": 2, # wideening factor for MLP/MoE layers. Default is 2 in T5.
"ff_layer_type": "t5_gmlp", # {'t5_gmlp', 'moe', 'mlp', 'gmlp'}. 'moe' for mixture of experts, 'mlp' for standard transformer dense layer, 'gmlp' for simple gated MLP.
"num_channels": 13,
},
},
"feat_length": "auto", # Input audio feature length for encoder. Automatically inferred by audio_cfg.
# mt3: 256 time steps
"event_length": 1024, # max length of event tokens excluding task tokens <-- 128 for multi-t5
"init_factor": 1.0, # initialization factor for embedding layers
}
# yapf: enable
shared_cfg = {
"PATH": {
"data_home": "../../data", # path to the data directory. If using relative path, it is relative to /src directory.
},
"BSZ": { # global batch size is local_bsz * n_GPUs in DDP mode
"train_sub": 12, #20, # sub-batch size is per CPU worker
"train_local": 24, #40, # local batch size is per GPU in DDP mode
"validation": 64, # validation batch size is per GPU in DDP mode
"test": 64,
},
"AUGMENTATION": {
"train_random_amp_range": [0.8, 1.1], # min and max amplitude scaling factor
"train_stem_iaug_prob": 0.7, # probability of stem activation in intra-stem augmentation
"train_stem_xaug_policy": {
"max_k": 3,
"tau": 0.3,
"alpha": 1.0,
"max_subunit_stems": 12, # the number of subunit stems to be reduced to this number of stems
"p_include_singing": None, # NOT IMPLEMENTED; probability of including singing for cross augmented examples. if None, use base probaility.
"no_instr_overlap": True,
"no_drum_overlap": True,
"uhat_intra_stem_augment": True,
},
"train_pitch_shift_range": [-2, 2], # [min, max] in semitones. None or [0, 0] for no pitch shift.
},
"DATAIO": { # do not set `shuffle` here.
"num_workers": 4, # num_worker is per GPU in DDP mode
"prefetch_factor": 2, #2,
"pin_memory": True,
"persistent_workers": False,
},
"CHECKPOINT": {
"save_top_k": 4, # max top k checkpoints to save
"monitor": 'validation/macro_onset_f',
"mode": 'max',
# "every_n_epochs": 20, # only working when check_val_every_n_epoch is 0
"save_last": True, # save last model
"filename": "{epoch}-{step}",
},
"TRAINER": { # do not coverwrite args in this section
"limit_train_batches": 1.0, # How much of training dataset to check (float = fraction, int = num_batches)
"limit_val_batches": 1.0,
"limit_test_batches": 1.0,
"gradient_clip_val": 1.0, # {0 or None} means don't clip.
"accumulate_grad_batches": 1, #1, # Accumulates grads every k batches. If set to 1, no effect.
"check_val_every_n_epoch": 1, #5, 1 for very large dataset such as EGMD
"num_sanity_val_steps": 0,
},
"WANDB": {
"save_dir": "../logs",
"cache_dir": "../logs/.wandb_cache",
"resume": "allow",
"anonymous": "allow", # {never, allow, must}
"mode": "online", # {online, offline, disabled}
},
"LR_SCHEDULE": {
# "scheduler_type": "cosine", # {legacy, cosine, constant}
"warmup_steps": 1000, # only for cosine scheduler, legacy scheduler follows T5's legacy schedule
"total_steps": 100000, # argparser of train.py can overwrite this
"final_cosine": 1e-5, # only for cosine scheduler
},
"TOKENIZER": {
"max_shift_steps": "auto", # max number of shift steps in the model. (int) or "auto". If "auto", it is set by audio_cfg["input_frames"] and shift_steps_ms. 206 with default setup.
"shift_step_ms": 10, # shift step in ms
},
}
T5_BASE_CFG = {
"google/t5-v1_1-small": {
"architectures": ["T5ForConditionalGeneration"],
"d_ff":
1024, # size of the intermediate feed forward layer in each T5Block. Can be overwrten by ff_widening_factor in model_cfg.
"d_kv": 64, # d_kv has to be equal to d_model // num_heads.
# "d_model": 512, # encoder hiddnen size, defined by model_cfg
"decoder_start_token_id": 0,
"dense_act_fn": "gelu_new",
# "dropout_rate": 0.05, # can be overwritten by args in ymt3
"eos_token_id": 1,
"feed_forward_proj": "gated-gelu",
"initializer_factor": 1.0,
"is_encoder_decoder": True,
"is_gated_act": True,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
# "num_decoder_layers": 8, # defined by model_cfg
# "num_heads": 6, # defined by model_cfg
# "num_layers": 8, # defined by model_cfg
"output_past": True,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
# "tie_word_embeddings": True,
"use_cache": True,
# "vocab_size": 1391 # vocab_size is automatically set by the task manager...
},
"google/t5-efficient-small": {
"architectures": ["T5ForConditionalGeneration"],
"d_ff": 2048,
"d_kv": 64,
"d_model": 512,
"decoder_start_token_id": 0,
"dropout_rate": 0.1,
"eos_token_id": 1,
"feed_forward_proj": "relu",
"initializer_factor": 1.0,
"is_encoder_decoder": True,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 6,
"num_heads": 8,
"num_layers": 6,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
"torch_dtype": "float32",
"transformers_version": "4.17.0.dev0",
"use_cache": True,
},
}
# yapf: enable
DEEPSPEED_CFG = {
"zero_allow_untested_optimizer": True,
"optimizer": {
"type": "adam",
"params": {
"lr": 1e-4,
"betas": [0.998, 0.999],
"eps": 1e-3,
"weight_decay": 0.001,
"adam_w_mode": True,
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"last_batch_iteration": -1,
"warmup_min_lr": 0,
"warmup_max_lr": 3e-5,
"warmup_num_steps": 100,
},
},
"zero_optimization": {
"stage": 0, #0,1,2,3
# "offload_optimizer":
# False, # Enable Offloading optimizer state/calculation to the host CPU
},
}
|