File size: 10,342 Bytes
a03c9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""preprocess_mir_st500.py"""
import os
import json
from typing import Dict
import numpy as np
from utils.audio import get_audio_file_info, load_audio_file
from utils.midi import midi2note, note_event2midi
from utils.note2event import note2note_event, sort_notes, validate_notes, trim_overlapping_notes
from utils.event2note import event2note_event
from utils.note_event_dataclasses import Note, NoteEvent
from utils.utils import note_event2token2note_event_sanity_check

SINGING_WITH_UNANNOTATED_PROGRAM = [100, 129]  # 100 for singing voice, 129 for unannotated
SINGING_ONLY_PROGRAM = [100]


def check_file_existence(file: str) -> bool:
    """Checks if file exists."""
    res = True
    if not os.path.exists(file):
        res = False
    elif get_audio_file_info(file)[1] < 10 * 16000:
        print(f'File {file} is too short.')
        res = False
    return res


def create_spleeter_audio_stem(vocal_audio_file, accomp_audio_file, mir_st500_id) -> Dict:
    program = SINGING_WITH_UNANNOTATED_PROGRAM
    is_drum = [0, 0]

    audio_tracks = []  # multi-channel audio array (C, T)
    vocal_audio = load_audio_file(vocal_audio_file, dtype=np.int16) / 2**15  # returns bytes
    audio_tracks.append(vocal_audio.astype(np.float16))
    accomp_audio = load_audio_file(accomp_audio_file, dtype=np.int16) / 2**15  # returns bytes
    audio_tracks.append(accomp_audio.astype(np.float16))
    max_length = max(len(vocal_audio), len(accomp_audio))

    # collate all the audio tracks into a single array
    n_tracks = 2
    audio_array = np.zeros((n_tracks, max_length), dtype=np.float16)
    for j, audio in enumerate(audio_tracks):
        audio_array[j, :len(audio)] = audio

    stem_content = {
        'mir_st500_id': mir_st500_id,
        'program': np.array(program, dtype=np.int64),
        'is_drum': np.array(is_drum, dtype=np.int64),
        'n_frames': max_length,  # int
        'audio_array': audio_array  # (n_tracks, n_frames)
    }
    return stem_content


def create_note_note_event_midi_from_mir_st500_annotation(ann, midi_file, mir_st500_id):
    """
    Args:
        ann: List[List[float, float, float]] # [onset, offset, pitch]
        mir_st500_id: str
    Returns:
        notes: List[Note]
        note_events: List[NoteEvent]
        midi: List[List[int]]
    """
    notes = []
    for onset, offset, pitch in ann:
        notes.append(
            Note(
                is_drum=False,
                program=100,
                onset=float(onset),
                offset=float(offset),
                pitch=int(pitch),
                velocity=1))
    notes = sort_notes(notes)
    notes = validate_notes(notes)
    notes = trim_overlapping_notes(notes)
    note_events = note2note_event(notes)

    # Write midi file
    note_event2midi(note_events, midi_file)
    print(f"Created {midi_file}")

    return {  # notes
        'mir_st500_id': mir_st500_id,
        'program': SINGING_ONLY_PROGRAM,
        'is_drum': [0, 0],
        'duration_sec': note_events[-1].time,
        'notes': notes,
    }, {  # note_events
        'mir_st500_id': mir_st500_id,
        'program': SINGING_ONLY_PROGRAM,
        'is_drum': [0, 0],
        'duration_sec': note_events[-1].time,
        'note_events': note_events,
    }


def correct_ann(ann_all: Dict, fix_offset: bool = False, max_dur: float = 0.5):
    """ correct too short notes that are actully sung in legato """
    for i in range(1, 101):
        for j, v in enumerate(ann_all[str(i)]):
            dur = v[1] - v[0]
            if dur < 0.01:
                next_onset = ann_all[str(i)][j + 1][0]
                dist_to_next_onset = next_onset - v[1]
                if fix_offset is True:
                    if dist_to_next_onset < max_dur:
                        # correct the offset
                        ann_all[str(i)][j][1] = next_onset
                        print(f'Corrected track {i}: {v} to {ann_all[str(i)][j]}')
                else:
                    print(v, ann_all[str(i)][j + 1], f'dist_to_next_onset: {dist_to_next_onset}')


def preprocess_mir_st500_16k(data_home=os.PathLike,
                             dataset_name='mir_st500',
                             apply_correction=False,
                             sanity_check=False) -> None:
    """
    Splits:
        'train',
        'train_vocal',
        'train_stem',
        'test',
        'test_vocal',
        'all',
        'all_vocal',
        'all_stem'

    Writes:
        - {dataset_name}_{split}_file_list.json: a dictionary with the following keys:
        {
            index:
            {
                'mir_st500_id': mir_st500_id,
                'n_frames': (int),
                'mix_audio_file': 'path/to/mix.wav',
                'notes_file': 'path/to/notes.npy',
                'note_events_file': 'path/to/note_events.npy',
                'midi_file': 'path/to/midi.mid',
                'program': List[int], 100 for singing voice, and 129 for unannotated  
                'is_drum': List[int], # [0] or [1]
            }
        }
    """

    # Directory and file paths
    base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
    output_index_dir = os.path.join(data_home, 'yourmt3_indexes')
    os.makedirs(output_index_dir, exist_ok=True)

    # Load annotation json file as dictionary
    ann_file = os.path.join(base_dir, 'MIR-ST500_20210206', 'MIR-ST500_corrected.json')
    with open(ann_file, 'r') as f:
        ann_all = json.load(f)  # index "1" to "500"

    # Correction for annotation
    correct_ann(ann_all, fix_offset=apply_correction, max_dur=0.5)

    # Check missing audio files and create a dictionary
    audio_all = {}  # except for missing files
    audio_missing = {'train': [], 'test': []}
    for i in range(1, 501):
        split = 'train' if i < 401 else 'test'
        audio_file = os.path.join(base_dir, f'{split}', f'{i}', 'converted_Mixture.wav')
        audio_vocal_file = os.path.join(base_dir, f'{split}', f'{i}', 'vocals.wav')
        audio_acc_file = os.path.join(base_dir, f'{split}', f'{i}', 'accompaniment.wav')
        if check_file_existence(audio_file) and check_file_existence(
                audio_vocal_file) and check_file_existence(audio_acc_file):
            audio_all[str(i)] = audio_file
        else:
            audio_missing[split].append(i)
    print(
        f'Number of missing audio files: train = {len(audio_missing["train"])}, test = {len(audio_missing["test"])}'
    )
    assert len(audio_all.keys()) == 500

    # Track ids
    ids_all = audio_all.keys()
    ids_train = []
    ids_test = []
    for i in ids_all:
        if int(i) < 401:
            ids_train.append(i)
        else:
            ids_test.append(i)
    # assert len(ids_train) == 346 and len(ids_test) == 94
    assert len(ids_train) == 400 and len(ids_test) == 100

    # Create notes, note_events, and MIDI from annotation
    for id in ids_all:
        ann = ann_all[id]
        split = 'train' if int(id) < 401 else 'test'
        midi_file = os.path.join(base_dir, f'{split}', id, 'singing.mid')
        notes, note_events = create_note_note_event_midi_from_mir_st500_annotation(
            ann, midi_file, id)

        notes_file = midi_file.replace('.mid', '_notes.npy')
        note_events_file = midi_file.replace('.mid', '_note_events.npy')
        np.save(notes_file, notes, allow_pickle=True, fix_imports=False)
        print(f"Created {notes_file}")
        np.save(note_events_file, note_events, allow_pickle=True, fix_imports=False)
        print(f"Created {note_events_file}")

        if sanity_check:
            # sanity check
            print(f'Sanity check for {id}...')
            note_event2token2note_event_sanity_check(note_events['note_events'], notes['notes'])

    # Process audio files
    for id in ids_all:
        split = 'train' if int(id) < 401 else 'test'
        audio_vocal_file = os.path.join(base_dir, f'{split}', id, 'vocals.wav')
        audio_acc_file = os.path.join(base_dir, f'{split}', id, 'accompaniment.wav')
        stem_file = os.path.join(base_dir, f'{split}', id, 'stem.npy')
        stem_content = create_spleeter_audio_stem(audio_vocal_file, audio_acc_file, id)
        # write audio stem
        np.save(stem_file, stem_content, allow_pickle=True, fix_imports=False)
        print(f"Created {stem_file}")

    # Create file_list.json
    ids_by_split = {
        'train': ids_train,
        'train_vocal': ids_train,
        'train_stem': ids_train,
        'test': ids_test,
        'test_vocal': ids_test,
        'all': ids_all,
        'all_vocal': ids_all,
        'all_stem': ids_all
    }

    for split in [
            'train', 'train_vocal', 'train_stem', 'test', 'test_vocal', 'all', 'all_vocal',
            'all_stem'
    ]:
        file_list = {}
        for i, id in enumerate(ids_by_split[split]):
            wav_file = audio_all[id]
            n_frames = get_audio_file_info(wav_file)[1]
            if 'vocal' in split:
                stem_file = None
                wav_file = wav_file.replace('converted_Mixture.wav', 'vocals.wav')
                program = SINGING_ONLY_PROGRAM
                is_drum = [0]
            elif 'stem' in split:
                stem_file = wav_file.replace('converted_Mixture.wav', 'stem.npy')
                program = SINGING_WITH_UNANNOTATED_PROGRAM
                is_drum = [0, 0]
            else:
                stem_file = None
                program = SINGING_WITH_UNANNOTATED_PROGRAM
                is_drum = [0, 0]

            mid_file = os.path.join(os.path.dirname(wav_file), 'singing.mid')
            file_list[i] = {
                'mir_st500_id': id,
                'n_frames': n_frames,
                'stem_file': stem_file,
                'mix_audio_file': wav_file,
                'notes_file': mid_file.replace('.mid', '_notes.npy'),
                'note_events_file': mid_file.replace('.mid', '_note_events.npy'),
                'midi_file': mid_file,
                'program': program,
                'is_drum': is_drum,
            }
            if stem_file is None:
                del file_list[i]['stem_file']

        output_file = os.path.join(output_index_dir, f'{dataset_name}_{split}_file_list.json')
        with open(output_file, 'w') as f:
            json.dump(file_list, f, indent=4)
        print(f'Created {output_file}')