File size: 9,796 Bytes
a03c9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
""" preprocess_mtrack_slakh.py

"""
import os
import time
import json
from typing import Dict, List, Tuple
import numpy as np
from utils.audio import get_audio_file_info, load_audio_file
from utils.midi import midi2note
from utils.note2event import note2note_event, mix_notes
import mirdata
from utils.mirdata_dev.datasets import slakh16k


def create_audio_stem_from_mtrack(ds: mirdata.core.Dataset,
                                  mtrack_id: str,
                                  delete_source_files: bool = False) -> Dict:
    """Extracts audio stems and metadata from a multitrack."""
    mtrack = ds.multitrack(mtrack_id)
    track_ids = mtrack.track_ids
    max_length = 0
    program_numbers = []
    is_drum = []
    audio_tracks = []  # multi-channel audio array (C, T)

    # collect all the audio tracks and their metadata
    for track_id in track_ids:
        track = ds.track(track_id)
        audio_file = track.audio_path
        program_numbers.append(track.program_number)
        is_drum.append(1) if track.is_drum else is_drum.append(0)

        fs, n_frames, n_channels = get_audio_file_info(audio_file)
        assert (fs == 16000 and n_channels == 1)
        max_length = n_frames if n_frames > max_length else max_length
        audio = load_audio_file(audio_file, dtype=np.int16)  # returns bytes
        audio = audio / 2**15
        audio = audio.astype(np.float16)
        audio_tracks.append(audio)
        if delete_source_files:
            print(f'๐Ÿ—‘๏ธ Deleting {audio_file} ...')
            os.remove(audio_file)

    # collate all the audio tracks into a single array
    n_tracks = len(track_ids)
    audio_array = np.zeros((n_tracks, max_length), dtype=np.float16)
    for j, audio in enumerate(audio_tracks):
        audio_array[j, :len(audio)] = audio

    stem_content = {
        'mtrack_id': mtrack_id,  # str
        'program': np.array(program_numbers, dtype=np.int64),
        'is_drum': np.array(is_drum, dtype=np.int64),
        'n_frames': max_length,  # int
        'audio_array': audio_array  # (n_tracks, n_frames)
    }
    return stem_content


def create_note_event_and_note_from_mtrack_mirdata(
        ds: mirdata.core.Dataset,
        mtrack_id: str,
        fix_bass_octave: bool = True) -> Tuple[Dict, Dict]:
    """Extracts note or note_event and metadata from a multitrack:
    Args:
        ds (mirdata.core.Dataset): Slakh dataset.
        mtrack_id (str): multitrack id.
    Returns:
        notes (dict): note events and metadata.
        note_events (dict): note events and metadata.
    """
    mtrack = ds.multitrack(mtrack_id)
    track_ids = mtrack.track_ids
    program_numbers = []
    is_drum = []
    mixed_notes = []
    duration_sec = 0.

    # mix notes from all stem midi files
    for track_id in track_ids:
        track = ds.track(track_id)
        stem_midi_file = track.midi_path
        notes, dur_sec = midi2note(
            stem_midi_file,
            binary_velocity=True,
            ch_9_as_drum=False,  # checked safe to set to False in Slakh
            force_all_drum=True if track.is_drum else False,
            force_all_program_to=None,  # Slakh always has program number
            trim_overlap=True,
            fix_offset=True,
            quantize=True,
            verbose=0,
            minimum_offset_sec=0.01,
            drum_offset_sec=0.01)

        if fix_bass_octave == True and track.program_number in np.arange(32, 40):
            if track.plugin_name == 'scarbee_jay_bass_slap_both.nkm':
                pass
            else:
                for note in notes:
                    note.pitch -= 12
                print("Fixed bass octave for track", track_id)

        mixed_notes = mix_notes((mixed_notes, notes), True, True, True)
        program_numbers.append(track.program_number)
        is_drum.append(1) if track.is_drum else is_drum.append(0)
        duration_sec = max(duration_sec, dur_sec)

    # convert mixed notes to note events
    mixed_note_events = note2note_event(mixed_notes, sort=True, return_activity=True)
    return {  # notes
        'mtrack_id': mtrack_id,  # str
        'program': np.array(program_numbers, dtype=np.int64),  # (n,)
        'is_drum': np.array(is_drum, dtype=np.int64),  # (n,) with 1 is drum
        'duration_sec': duration_sec,  # float
        'notes': mixed_notes  # list of Note instances
    }, {  # note_events
        'mtrack_id': mtrack_id,  # str
        'program': np.array(program_numbers, dtype=np.int64),  # (n,)
        'is_drum': np.array(is_drum, dtype=np.int64),  # (n,) with 1 is drum
        'duration_sec': duration_sec,  # float
        'note_events': mixed_note_events  # list of NoteEvent instances
    }


def preprocess_slakh16k(data_home: str,
                        run_checksum: bool = False,
                        delete_source_files: bool = False,
                        fix_bass_octave: bool = True) -> None:
    """
    Processes the Slakh dataset and extracts stems for each multitrack.

    Args:
        data_home (str): path to the Slakh data.
        run_checksum (bool): if True, validates the dataset using its checksum. Default is False.
        delete_source_files (bool): if True, deletes original audio files. Default is False.
        fix_bass_octave (bool): if True, fixes the bass to be -1 octave. Slakh bass is annotated as +1 octave. Default is True.
        
    Writes:
        - {dataset_name}_{split}_file_list.json: a dictionary with the following keys:
            {
                'mtrack_id': mtrack_id,
                'n_frames': n of audio frames
                'stem_file': Dict of stem audio file info
                'mix_audio_file': mtrack.mix_path,
                'notes_file': available only for 'validation' and 'test'
                'note_events_file': available only for 'train' and 'validation'
                'midi_file': mtrack.midi_path
            }
    """
    start_time = time.time()

    ds = slakh16k.Dataset(data_home=data_home, version='2100-yourmt3-16k')
    if run_checksum:
        print('Checksum for slakh dataset...')
        ds.validate()
    print('Preprocessing slakh dataset...')

    mtrack_split_dict = ds.get_mtrack_splits()
    for split in ['train', 'validation', 'test']:
        file_list = {}  # write a file list for each split
        mtrack_ids = mtrack_split_dict[split]

        for i, mtrack_id in enumerate(mtrack_ids):
            print(f'๐Ÿƒ๐Ÿปโ€โ™‚๏ธ: processing {mtrack_id} ({i+1}/{len(mtrack_ids)} in {split})')
            mtrack = ds.multitrack(mtrack_id)
            output_dir = os.path.dirname(mtrack.mix_path)  # same as mtrack
            """Audio: get stems (as array) and metadata from the multitrack"""
            stem_content = create_audio_stem_from_mtrack(ds, mtrack_id, delete_source_files)

            # save the audio array and metadata to disk
            stem_file = os.path.join(output_dir, mtrack_id + '_stem.npy')
            np.save(stem_file, stem_content)
            print(f'๐Ÿ’ฟ Created {stem_file}')

            # no preprocessing for mix audio
            """MIDI: pre-process and get metadata from the multitrack"""
            notes, note_events = create_note_event_and_note_from_mtrack_mirdata(
                ds, mtrack_id, fix_bass_octave=fix_bass_octave)
            # save the note events and metadata to disk
            notes_file = os.path.join(output_dir, mtrack_id + '_notes.npy')
            np.save(notes_file, notes, allow_pickle=True, \
                    fix_imports=False)
            print(f'๐ŸŽน Created {notes_file}')

            note_events_file = os.path.join(output_dir, mtrack_id + '_note_events.npy')
            np.save(note_events_file, note_events, allow_pickle=True, \
                    fix_imports=False)
            print(f'๐ŸŽน Created {note_events_file}')

            # add to the file list of the split
            file_list[i] = {
                'mtrack_id': mtrack_id,
                'n_frames': stem_content['n_frames'], # n of audio frames
                'stem_file': stem_file,
                'mix_audio_file': mtrack.mix_path,
                'notes_file': notes_file,
                'note_events_file': note_events_file,\
                'midi_file': mtrack.midi_path
            }
        # By split, save a file list as json
        summary_dir = os.path.join(data_home, 'yourmt3_indexes')
        os.makedirs(summary_dir, exist_ok=True)
        summary_file = os.path.join(summary_dir, f'slakh_{split}_file_list.json')
        with open(summary_file, 'w') as f:
            json.dump(file_list, f, indent=4)
        print(f'๐Ÿ’พ Created {summary_file}')

        elapsed_time = time.time() - start_time
        print(
            f"โฐ: {int(elapsed_time // 3600):02d}h {int(elapsed_time % 3600 // 60):02d}m {elapsed_time % 60:.2f}s"
        )
    """ end of preprocess_slakh16k """


def add_program_and_is_drum_info_to_file_list(data_home: str):

    for split in ['train', 'validation', 'test']:
        file_list_dir = os.path.join(data_home, 'yourmt3_indexes')
        file = os.path.join(file_list_dir, f'slakh_{split}_file_list.json')
        with open(file, 'r') as f:
            file_list = json.load(f)

        for v in file_list.values():
            stem_file = v['stem_file']
            stem_content = np.load(stem_file, allow_pickle=True).item()
            v['program'] = stem_content['program'].tolist()
            v['is_drum'] = stem_content['is_drum'].tolist()

        with open(file, 'w') as f:
            json.dump(file_list, f, indent=4)
        print(f'๐Ÿ’พ Added program and drum info to {file}')


if __name__ == '__main__':
    from config.config import shared_cfg
    data_home = shared_cfg['PATH']['data_home']
    preprocess_slakh16k(data_home=data_home, delete_source_files=False)