|
"""rotary_embedding.py - Rotary Embedding based on https://github.com/lucidrains/rotary-embedding-torch""" |
|
from typing import Literal, Union, Optional |
|
from math import pi, log |
|
from einops import rearrange, repeat |
|
|
|
import torch |
|
from torch.nn import Module, ModuleList |
|
from torch.cuda.amp import autocast |
|
from torch import nn, einsum, broadcast_tensors, Tensor |
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def default(val, d): |
|
return val if exists(val) else d |
|
|
|
|
|
|
|
def broadcat(tensors, dim=-1): |
|
broadcasted_tensors = broadcast_tensors(*tensors) |
|
return torch.cat(broadcasted_tensors, dim=dim) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
x = rearrange(x, '... (d r) -> ... d r', r=2) |
|
x1, x2 = x.unbind(dim=-1) |
|
x = torch.stack((-x2, x1), dim=-1) |
|
return rearrange(x, '... d r -> ... (d r)') |
|
|
|
|
|
@autocast(enabled=False) |
|
def apply_rotary_emb(freqs, t, start_index=0, scale=1., seq_dim=-2): |
|
"""Applies rotary embedding for pixels.""" |
|
if t.ndim == 3: |
|
seq_len = t.shape[seq_dim] |
|
freqs = freqs[-seq_len:].to(t) |
|
|
|
rot_dim = freqs.shape[-1] |
|
end_index = start_index + rot_dim |
|
|
|
assert rot_dim <= t.shape[ |
|
-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}' |
|
|
|
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] |
|
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) |
|
return torch.cat((t_left, t, t_right), dim=-1) |
|
|
|
|
|
|
|
def apply_learned_rotations(rotations, t, start_index=0, freq_ranges=None): |
|
if exists(freq_ranges): |
|
rotations = einsum('..., f -> ... f', rotations, freq_ranges) |
|
rotations = rearrange(rotations, '... r f -> ... (r f)') |
|
|
|
rotations = repeat(rotations, '... n -> ... (n r)', r=2) |
|
return apply_rotary_emb(rotations, t, start_index=start_index) |
|
|
|
|
|
|
|
class RotaryEmbedding(Module): |
|
|
|
def __init__(self, |
|
dim, |
|
custom_freqs: Optional[Tensor] = None, |
|
freqs_for: Union[Literal['lang'], Literal['pixel'], Literal['constant']] = 'lang', |
|
theta=10000, |
|
max_freq=10, |
|
num_freqs=1, |
|
learned_freq=False, |
|
use_xpos=False, |
|
xpos_scale_base=512, |
|
interpolate_factor=1., |
|
theta_rescale_factor=1., |
|
seq_before_head_dim=False, |
|
cache_if_possible=True): |
|
super().__init__() |
|
|
|
|
|
|
|
|
|
theta *= theta_rescale_factor**(dim / (dim - 2)) |
|
|
|
self.freqs_for = freqs_for |
|
|
|
if exists(custom_freqs): |
|
freqs = custom_freqs |
|
elif freqs_for == 'lang': |
|
freqs = 1. / (theta**(torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) |
|
elif freqs_for == 'pixel': |
|
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi |
|
elif freqs_for == 'constant': |
|
freqs = torch.ones(num_freqs).float() |
|
|
|
self.cache_if_possible = cache_if_possible |
|
|
|
self.tmp_store('cached_freqs', None) |
|
self.tmp_store('cached_scales', None) |
|
|
|
self.freqs = nn.Parameter(freqs, requires_grad=learned_freq) |
|
|
|
self.learned_freq = learned_freq |
|
|
|
|
|
|
|
self.tmp_store('dummy', torch.tensor(0)) |
|
|
|
|
|
|
|
self.seq_before_head_dim = seq_before_head_dim |
|
self.default_seq_dim = -3 if seq_before_head_dim else -2 |
|
|
|
|
|
|
|
assert interpolate_factor >= 1. |
|
self.interpolate_factor = interpolate_factor |
|
|
|
|
|
|
|
self.use_xpos = use_xpos |
|
if not use_xpos: |
|
self.tmp_store('scale', None) |
|
return |
|
|
|
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) |
|
self.scale_base = xpos_scale_base |
|
self.tmp_store('scale', scale) |
|
|
|
@property |
|
def device(self): |
|
return self.dummy.device |
|
|
|
def tmp_store(self, key, value): |
|
self.register_buffer(key, value, persistent=False) |
|
|
|
def get_seq_pos(self, seq_len, device, dtype, offset=0): |
|
return (torch.arange(seq_len, device=device, dtype=dtype) + offset) / self.interpolate_factor |
|
|
|
def rotate_queries_or_keys(self, t, seq_dim=None, offset=0, freq_seq_len=None): |
|
seq_dim = default(seq_dim, self.default_seq_dim) |
|
|
|
assert not self.use_xpos, 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings' |
|
|
|
device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim] |
|
|
|
if exists(freq_seq_len): |
|
assert freq_seq_len >= seq_len |
|
seq_len = freq_seq_len |
|
|
|
freqs = self.forward(self.get_seq_pos(seq_len, device=device, dtype=dtype, offset=offset), |
|
seq_len=seq_len, |
|
offset=offset) |
|
|
|
if seq_dim == -3: |
|
freqs = rearrange(freqs, 'n d -> n 1 d') |
|
|
|
return apply_rotary_emb(freqs, t, seq_dim=seq_dim) |
|
|
|
def rotate_queries_with_cached_keys(self, q, k, seq_dim=None, offset=0): |
|
seq_dim = default(seq_dim, self.default_seq_dim) |
|
|
|
q_len, k_len = q.shape[seq_dim], k.shape[seq_dim] |
|
assert q_len <= k_len |
|
rotated_q = self.rotate_queries_or_keys(q, seq_dim=seq_dim, freq_seq_len=k_len) |
|
rotated_k = self.rotate_queries_or_keys(k, seq_dim=seq_dim) |
|
|
|
rotated_q = rotated_q.type(q.dtype) |
|
rotated_k = rotated_k.type(k.dtype) |
|
|
|
return rotated_q, rotated_k |
|
|
|
def rotate_queries_and_keys(self, q, k, seq_dim=None): |
|
seq_dim = default(seq_dim, self.default_seq_dim) |
|
|
|
assert self.use_xpos |
|
device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim] |
|
|
|
seq = self.get_seq_pos(seq_len, dtype=dtype, device=device) |
|
|
|
freqs = self.forward(seq, seq_len=seq_len) |
|
scale = self.get_scale(seq, seq_len=seq_len).to(dtype) |
|
|
|
if seq_dim == -3: |
|
freqs = rearrange(freqs, 'n d -> n 1 d') |
|
scale = rearrange(scale, 'n d -> n 1 d') |
|
|
|
rotated_q = apply_rotary_emb(freqs, q, scale=scale, seq_dim=seq_dim) |
|
rotated_k = apply_rotary_emb(freqs, k, scale=scale**-1, seq_dim=seq_dim) |
|
|
|
rotated_q = rotated_q.type(q.dtype) |
|
rotated_k = rotated_k.type(k.dtype) |
|
|
|
return rotated_q, rotated_k |
|
|
|
def get_scale(self, t: Tensor, seq_len: Optional[int] = None, offset=0): |
|
assert self.use_xpos |
|
|
|
should_cache = (self.cache_if_possible and exists(seq_len)) |
|
|
|
if ( |
|
should_cache and \ |
|
exists(self.cached_scales) and \ |
|
(seq_len + offset) <= self.cached_scales.shape[0] |
|
): |
|
return self.cached_scales[offset:(offset + seq_len)] |
|
|
|
scale = 1. |
|
if self.use_xpos: |
|
power = (t - len(t) // 2) / self.scale_base |
|
scale = self.scale**rearrange(power, 'n -> n 1') |
|
scale = torch.cat((scale, scale), dim=-1) |
|
|
|
if should_cache: |
|
self.tmp_store('cached_scales', scale) |
|
|
|
return scale |
|
|
|
def get_axial_freqs(self, *dims): |
|
Colon = slice(None) |
|
all_freqs = [] |
|
|
|
for ind, dim in enumerate(dims): |
|
if self.freqs_for == 'pixel': |
|
pos = torch.linspace(-1, 1, steps=dim, device=self.device) |
|
else: |
|
pos = torch.arange(dim, device=self.device) |
|
|
|
freqs = self.forward(pos, seq_len=dim) |
|
|
|
all_axis = [None] * len(dims) |
|
all_axis[ind] = Colon |
|
|
|
new_axis_slice = (Ellipsis, *all_axis, Colon) |
|
all_freqs.append(freqs[new_axis_slice]) |
|
|
|
all_freqs = broadcast_tensors(*all_freqs) |
|
return torch.cat(all_freqs, dim=-1) |
|
|
|
@autocast(enabled=False) |
|
def forward(self, t: Tensor, seq_len=None, offset=0): |
|
should_cache = ( |
|
self.cache_if_possible and \ |
|
not self.learned_freq and \ |
|
exists(seq_len) and \ |
|
self.freqs_for != 'pixel' |
|
) |
|
|
|
if ( |
|
should_cache and \ |
|
exists(self.cached_freqs) and \ |
|
(offset + seq_len) <= self.cached_freqs.shape[0] |
|
): |
|
return self.cached_freqs[offset:(offset + seq_len)].detach() |
|
|
|
freqs = self.freqs |
|
|
|
freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs) |
|
freqs = repeat(freqs, '... n -> ... (n r)', r=2) |
|
|
|
if should_cache: |
|
self.tmp_store('cached_freqs', freqs.detach()) |
|
|
|
return freqs |
|
|
|
|
|
@torch.compiler.disable |
|
def apply_rotary_custom(self, t: torch.Tensor): |
|
"""Apply rotary embeddings to queries and keys, if k is None, only q is rotated. |
|
Depending on the freqs type, the rotation will be different.""" |
|
if self.freqs_for == 'lang': |
|
return self.rotate_queries_or_keys(t, seq_dim=-2) |
|
elif self.freqs_for == 'pixel': |
|
return apply_rotary_emb(self.get_axial_freqs(t.shape[-2]), t) |
|
else: |
|
raise ValueError(f"freqs_for must be 'lang' or 'pixel', but got {self.freqs_for}") |
|
|
|
|
|
def test_rotary_embedding_lang(): |
|
d = 32 |
|
q = torch.ones(1, 4, 110, 32) |
|
rdim = d // 2 |
|
|
|
rotary = RotaryEmbedding(dim=rdim, freqs_for="lang") |
|
q = rotary.rotate_queries_or_keys(q, seq_dim=-2) |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
plt.imshow(q[0, 0, :, :].numpy().T, origin='lower') |
|
|
|
|
|
def test_rotary_embedding_pixel(): |
|
d = 32 |
|
q = torch.ones(1, 4, 128, 32) |
|
rdim = d // 2 |
|
|
|
rotary = RotaryEmbedding(dim=rdim, freqs_for="pixel", max_freq=10) |
|
freqs = rotary.get_axial_freqs(128) |
|
|
|
q = apply_rotary_emb(freqs, q) |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
plt.imshow(q[0, 0, :, :].numpy().T, origin='lower') |
|
|