|
"""rotary_positional_embedding.py - Rotary Positional Embedding |
|
|
|
code from github.com/lucidrains/rotary-embedding-torch |
|
|
|
MIT License |
|
""" |
|
|
|
from math import pi, log |
|
import torch |
|
from torch import nn, einsum |
|
from einops import rearrange, repeat |
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def broadcat(tensors, dim=-1): |
|
num_tensors = len(tensors) |
|
shape_lens = set(list(map(lambda t: len(t.shape), tensors))) |
|
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions' |
|
shape_len = list(shape_lens)[0] |
|
|
|
dim = (dim + shape_len) if dim < 0 else dim |
|
dims = list(zip(*map(lambda t: list(t.shape), tensors))) |
|
|
|
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] |
|
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims) |
|
]), 'invalid dimensions for broadcastable concatentation' |
|
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) |
|
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) |
|
expanded_dims.insert(dim, (dim, dims[dim])) |
|
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) |
|
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) |
|
return torch.cat(tensors, dim=dim) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
x = rearrange(x, '... (d r) -> ... d r', r=2) |
|
x1, x2 = x.unbind(dim=-1) |
|
x = torch.stack((-x2, x1), dim=-1) |
|
return rearrange(x, '... d r -> ... (d r)') |
|
|
|
|
|
def apply_rotary_emb(freqs, t, start_index=0, scale=1.): |
|
rot_dim, seq_len = freqs.shape[-1], t.shape[-2] |
|
freqs = freqs[-seq_len:, :] |
|
|
|
freqs = freqs.to(t) |
|
end_index = start_index + rot_dim |
|
assert rot_dim <= t.shape[ |
|
-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}' |
|
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] |
|
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) |
|
return torch.cat((t_left, t, t_right), dim=-1) |
|
|
|
|
|
|
|
def apply_learned_rotations(rotations, t, start_index=0, freq_ranges=None): |
|
if exists(freq_ranges): |
|
rotations = einsum('..., f -> ... f', rotations, freq_ranges) |
|
rotations = rearrange(rotations, '... r f -> ... (r f)') |
|
|
|
rotations = repeat(rotations, '... n -> ... (n r)', r=2) |
|
return apply_rotary_emb(rotations, t, start_index=start_index) |
|
|
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
|
|
def __init__(self, |
|
dim, |
|
custom_freqs=None, |
|
freqs_for='lang', |
|
theta=10000, |
|
max_freq=10, |
|
num_freqs=1, |
|
learned_freq=False, |
|
use_xpos=False, |
|
xpos_scale_base=512, |
|
interpolate_factor=1., |
|
theta_rescale_factor=1.): |
|
super().__init__() |
|
|
|
|
|
|
|
theta *= theta_rescale_factor**(dim / (dim - 2)) |
|
|
|
if exists(custom_freqs): |
|
freqs = custom_freqs |
|
elif freqs_for == 'lang': |
|
freqs = 1. / (theta**(torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) |
|
elif freqs_for == 'pixel': |
|
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi |
|
elif freqs_for == 'constant': |
|
freqs = torch.ones(num_freqs).float() |
|
else: |
|
raise ValueError(f'unknown modality {freqs_for}') |
|
|
|
self.cache = dict() |
|
self.cache_scale = dict() |
|
self.freqs = nn.Parameter(freqs, requires_grad=learned_freq) |
|
|
|
|
|
|
|
assert interpolate_factor >= 1. |
|
self.interpolate_factor = interpolate_factor |
|
|
|
|
|
|
|
self.use_xpos = use_xpos |
|
if not use_xpos: |
|
self.register_buffer('scale', None) |
|
return |
|
|
|
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) |
|
self.scale_base = xpos_scale_base |
|
self.register_buffer('scale', scale) |
|
|
|
def get_seq_pos(self, seq_len, device, dtype, offset=0): |
|
return (torch.arange(seq_len, device=device, dtype=dtype) + |
|
offset) / self.interpolate_factor |
|
|
|
def rotate_queries_or_keys(self, t, seq_dim=-2, offset=0, freq_seq_len=None): |
|
assert not self.use_xpos, 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings' |
|
|
|
device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim] |
|
|
|
if exists(freq_seq_len): |
|
assert freq_seq_len >= seq_len |
|
seq_len = freq_seq_len |
|
|
|
freqs = self.forward( |
|
lambda: self.get_seq_pos(seq_len, device=device, dtype=dtype, offset=offset), |
|
cache_key=f'freqs:{seq_len}|offset:{offset}') |
|
return apply_rotary_emb(freqs, t) |
|
|
|
def rotate_queries_with_cached_keys(self, q, k, seq_dim=-2): |
|
q_len, k_len = q.shape[seq_dim], k.shape[seq_dim] |
|
assert q_len <= k_len |
|
q = self.rotate_queries_or_keys(q, seq_dim=seq_dim, freq_seq_len=k_len) |
|
k = self.rotate_queries_or_keys(k, seq_dim=seq_dim) |
|
return q, k |
|
|
|
def rotate_queries_and_keys(self, q, k, seq_dim=-2): |
|
assert self.use_xpos |
|
device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim] |
|
seq = self.get_seq_pos(seq_len, dtype=dtype, device=device) |
|
freqs = self.forward(lambda: seq, cache_key=f'freqs:{seq_len}') |
|
scale = self.get_scale(lambda: seq, cache_key=f'scale:{seq_len}').to(dtype) |
|
rotated_q = apply_rotary_emb(freqs, q, scale=scale) |
|
rotated_k = apply_rotary_emb(freqs, k, scale=scale**-1) |
|
return rotated_q, rotated_k |
|
|
|
def get_scale(self, t, cache_key=None): |
|
assert self.use_xpos |
|
|
|
if exists(cache_key) and cache_key in self.cache: |
|
return self.cache[cache_key] |
|
|
|
if callable(t): |
|
t = t() |
|
|
|
scale = 1. |
|
if self.use_xpos: |
|
power = (t - len(t) // 2) / self.scale_base |
|
scale = self.scale**rearrange(power, 'n -> n 1') |
|
scale = torch.cat((scale, scale), dim=-1) |
|
|
|
if exists(cache_key): |
|
self.cache[cache_key] = scale |
|
|
|
return scale |
|
|
|
def forward(self, t, cache_key=None): |
|
if exists(cache_key) and cache_key in self.cache: |
|
return self.cache[cache_key] |
|
|
|
if callable(t): |
|
t = t() |
|
|
|
freqs = self.freqs |
|
|
|
freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs) |
|
freqs = repeat(freqs, '... n -> ... (n r)', r=2) |
|
|
|
if exists(cache_key): |
|
self.cache[cache_key] = freqs |
|
|
|
return freqs |