from utils.datasets_eval import AudioFileDataset from torch.utils.data import DataLoader import pytorch_lightning as pl def test(): ds = AudioFileDataset() dl = DataLoader( ds, batch_size=None, collate_fn=lambda k: k ) # empty collate_fn is required to use mixed types. for x, y in dl: break class MyModel(pl.LightningModule): def __init__(self, **kwargs): super().__init__() def forward(self, x): return x def training_step(self, batch, batch_idx): return 0 def validation_step(self, batch, batch_idx): print(batch) return 0 def train_dataloader(self): return dl def val_dataloader(self): return dl def configure_optimizers(self): return None model = MyModel() trainer = pl.Trainer() trainer.validate(model)