File size: 129,438 Bytes
82fea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import collections
import contextlib
import json
import math
import os
import re
import shutil
import sys
import warnings
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from types import MethodType
from typing import Any, Callable, Union

import torch
import torch.utils.hooks as hooks

from .checkpointing import load_accelerator_state, load_custom_state, save_accelerator_state, save_custom_state
from .data_loader import DataLoaderDispatcher, prepare_data_loader, skip_first_batches
from .logging import get_logger
from .optimizer import AcceleratedOptimizer
from .scheduler import AcceleratedScheduler
from .state import AcceleratorState, GradientState, PartialState
from .tracking import LOGGER_TYPE_TO_CLASS, GeneralTracker, filter_trackers
from .utils import (
    MODEL_NAME,
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    DeepSpeedPlugin,
    DistributedDataParallelKwargs,
    DistributedType,
    DynamoBackend,
    FP8RecipeKwargs,
    FullyShardedDataParallelPlugin,
    GradientAccumulationPlugin,
    GradScalerKwargs,
    InitProcessGroupKwargs,
    KwargsHandler,
    LoggerType,
    MegatronLMPlugin,
    PrecisionType,
    ProjectConfiguration,
    RNGType,
    TorchDynamoPlugin,
    compare_versions,
    convert_model,
    convert_outputs_to_fp32,
    extract_model_from_parallel,
    gather,
    get_mixed_precision_context_manager,
    get_pretty_name,
    has_transformer_engine_layers,
    id_tensor_storage,
    is_bf16_available,
    is_deepspeed_available,
    is_fp8_available,
    is_ipex_available,
    is_megatron_lm_available,
    is_npu_available,
    is_safetensors_available,
    is_torch_version,
    is_tpu_available,
    is_xpu_available,
    load_fsdp_model,
    load_fsdp_optimizer,
    pad_across_processes,
    parse_choice_from_env,
    recursively_apply,
    reduce,
    release_memory,
    save,
    save_fsdp_model,
    save_fsdp_optimizer,
    shard_checkpoint,
    wait_for_everyone,
)
from .utils.constants import FSDP_PYTORCH_VERSION


if is_deepspeed_available():
    import deepspeed

    from .utils import (
        DeepSpeedEngineWrapper,
        DeepSpeedOptimizerWrapper,
        DeepSpeedSchedulerWrapper,
        DummyOptim,
        DummyScheduler,
    )

if is_fp8_available():
    import transformer_engine.common.recipe as te_recipe
    from transformer_engine.pytorch import fp8_autocast


if is_megatron_lm_available():
    from .utils import (
        MegatronEngine,
        MegatronLMDummyDataLoader,
        MegatronLMDummyScheduler,
        MegatronLMOptimizerWrapper,
        MegatronLMSchedulerWrapper,
        megatron_lm_initialize,
        megatron_lm_prepare_data_loader,
        megatron_lm_prepare_model,
        megatron_lm_prepare_optimizer,
        megatron_lm_prepare_scheduler,
    )

from torch.distributed.algorithms.join import Join


if is_tpu_available(check_device=False):
    import torch_xla.core.xla_model as xm
    import torch_xla.distributed.xla_multiprocessing as xmp


try:
    from torch.optim.lr_scheduler import LRScheduler
except ImportError:
    from torch.optim.lr_scheduler import _LRScheduler as LRScheduler

logger = get_logger(__name__)


class Accelerator:
    """
    Creates an instance of an accelerator for distributed training (on multi-GPU, TPU) or mixed precision training.

    Args:
        device_placement (`bool`, *optional*, defaults to `True`):
            Whether or not the accelerator should put objects on device (tensors yielded by the dataloader, model,
            etc...).
        split_batches (`bool`, *optional*, defaults to `False`):
            Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If
            `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a
            round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set
            in your script multiplied by the number of processes.
        mixed_precision (`str`, *optional*):
            Whether or not to use mixed precision training. Choose from 'no','fp16','bf16 or 'fp8'. Will default to the
            value in the environment variable `ACCELERATE_MIXED_PRECISION`, which will use the default value in the
            accelerate config of the current system or the flag passed with the `accelerate.launch` command. 'fp16'
            requires pytorch 1.6 or higher. 'bf16' requires pytorch 1.10 or higher. 'fp8' requires the installation of
            transformers-engine.
        gradient_accumulation_steps (`int`, *optional*, default to 1):
            The number of steps that should pass before gradients are accumulated. A number > 1 should be combined with
            `Accelerator.accumulate`. If not passed, will default to the value in the environment variable
            `ACCELERATE_GRADIENT_ACCUMULATION_STEPS`. Can also be configured through a `GradientAccumulationPlugin`.
        cpu (`bool`, *optional*):
            Whether or not to force the script to execute on CPU. Will ignore GPU available if set to `True` and force
            the execution on one process only.
        deepspeed_plugin (`DeepSpeedPlugin`, *optional*):
            Tweak your DeepSpeed related args using this argument. This argument is optional and can be configured
            directly using *accelerate config*
        fsdp_plugin (`FullyShardedDataParallelPlugin`, *optional*):
            Tweak your FSDP related args using this argument. This argument is optional and can be configured directly
            using *accelerate config*
        megatron_lm_plugin (`MegatronLMPlugin`, *optional*):
            Tweak your MegatronLM related args using this argument. This argument is optional and can be configured
            directly using *accelerate config*
        rng_types (list of `str` or [`~utils.RNGType`]):
            The list of random number generators to synchronize at the beginning of each iteration in your prepared
            dataloaders. Should be one or several of:

            - `"torch"`: the base torch random number generator
            - `"cuda"`: the CUDA random number generator (GPU only)
            - `"xla"`: the XLA random number generator (TPU only)
            - `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your
              dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type.

            Will default to `["torch"]` for PyTorch versions <=1.5.1 and `["generator"]` for PyTorch versions >= 1.6.
        log_with (list of `str`, [`~utils.LoggerType`] or [`~tracking.GeneralTracker`], *optional*):
            A list of loggers to be setup for experiment tracking. Should be one or several of:

            - `"all"`
            - `"tensorboard"`
            - `"wandb"`
            - `"comet_ml"`
            If `"all"` is selected, will pick up all available trackers in the environment and initialize them. Can
            also accept implementations of `GeneralTracker` for custom trackers, and can be combined with `"all"`.
        project_config (`ProjectConfiguration`, *optional*):
            A configuration for how saving the state can be handled.
        project_dir (`str`, `os.PathLike`, *optional*):
            A path to a directory for storing data such as logs of locally-compatible loggers and potentially saved
            checkpoints.
        dispatch_batches (`bool`, *optional*):
            If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process
            and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose
            underlying dataset is an `IterableDataset`, `False` otherwise.
        even_batches (`bool`, *optional*, defaults to `True`):
            If set to `True`, in cases where the total batch size across all processes does not exactly divide the
            dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
            all workers.
        step_scheduler_with_optimizer (`bool`, *optional`, defaults to `True`):
            Set `True` if the learning rate scheduler is stepped at the same time as the optimizer, `False` if only
            done under certain circumstances (at the end of each epoch, for instance).
        kwargs_handlers (`list[KwargHandler]`, *optional*)
            A list of `KwargHandler` to customize how the objects related to distributed training or mixed precision
            are created. See [kwargs](kwargs) for more information.
        dynamo_backend (`str` or `DynamoBackend`, *optional*, defaults to `"no"`):
            Set to one of the possible dynamo backends to optimize your training with torch dynamo.
        gradient_accumulation_plugin (`GradientAccumulationPlugin`, *optional*):
            A configuration for how gradient accumulation should be handled, if more tweaking than just the
            `gradient_accumulation_steps` is needed.

    **Available attributes:**

        - **device** (`torch.device`) -- The device to use.
        - **distributed_type** ([`~utils.DistributedType`]) -- The distributed training configuration.
        - **local_process_index** (`int`) -- The process index on the current machine.
        - **mixed_precision** (`str`) -- The configured mixed precision mode.
        - **num_processes** (`int`) -- The total number of processes used for training.
        - **optimizer_step_was_skipped** (`bool`) -- Whether or not the optimizer update was skipped (because of
          gradient overflow in mixed precision), in which
        case the learning rate should not be changed.
        - **process_index** (`int`) -- The overall index of the current process among all processes.
        - **state** ([`~state.AcceleratorState`]) -- The distributed setup state.
        - **sync_gradients** (`bool`) -- Whether the gradients are currently being synced across all processes.
        - **use_distributed** (`bool`) -- Whether the current configuration is for distributed training.
    """

    def __init__(
        self,
        device_placement: bool = True,
        split_batches: bool = False,
        mixed_precision: PrecisionType | str | None = None,
        gradient_accumulation_steps: int = 1,
        cpu: bool = False,
        deepspeed_plugin: DeepSpeedPlugin | None = None,
        fsdp_plugin: FullyShardedDataParallelPlugin | None = None,
        megatron_lm_plugin: MegatronLMPlugin | None = None,
        rng_types: list[str | RNGType] | None = None,
        log_with: str | LoggerType | GeneralTracker | list[str | LoggerType | GeneralTracker] | None = None,
        project_dir: str | os.PathLike | None = None,
        project_config: ProjectConfiguration | None = None,
        gradient_accumulation_plugin: GradientAccumulationPlugin | None = None,
        dispatch_batches: bool | None = None,
        even_batches: bool = True,
        step_scheduler_with_optimizer: bool = True,
        kwargs_handlers: list[KwargsHandler] | None = None,
        dynamo_backend: DynamoBackend | str | None = None,
    ):
        if project_config is not None:
            self.project_configuration = project_config
        else:
            self.project_configuration = ProjectConfiguration(project_dir=project_dir)
        if project_dir is not None and self.project_dir is None:
            self.project_configuration.set_directories(project_dir)
        if mixed_precision is not None:
            mixed_precision = str(mixed_precision)
            if mixed_precision not in PrecisionType:
                raise ValueError(
                    f"Unknown mixed_precision mode: {mixed_precision}. Choose between {PrecisionType.list()}"
                )

        dynamo_plugin = TorchDynamoPlugin() if dynamo_backend is None else TorchDynamoPlugin(backend=dynamo_backend)

        if deepspeed_plugin is None:  # init from env variables
            deepspeed_plugin = (
                DeepSpeedPlugin() if os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true" else None
            )
        else:
            assert isinstance(
                deepspeed_plugin, DeepSpeedPlugin
            ), "`deepspeed_plugin` must be an `accelerate.utils.DeepSpeedPlugin` object."
            os.environ["ACCELERATE_USE_DEEPSPEED"] = "true"  # use DeepSpeed if plugin is provided
        if deepspeed_plugin:
            if not is_deepspeed_available():
                raise ImportError("DeepSpeed is not installed => run `pip install deepspeed` or build it from source.")
            if compare_versions("deepspeed", "<", "0.9.3"):
                raise ImportError("DeepSpeed version must be >= 0.9.3. Please update DeepSpeed.")

            mixed_precision = (
                os.environ.get("ACCELERATE_MIXED_PRECISION", "no") if mixed_precision is None else mixed_precision
            )
            deepspeed_plugin.set_mixed_precision(mixed_precision)
            deepspeed_plugin.set_deepspeed_weakref()

        if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true" or isinstance(
            fsdp_plugin, FullyShardedDataParallelPlugin
        ):
            if is_torch_version("<", FSDP_PYTORCH_VERSION):
                raise ValueError(f"FSDP requires PyTorch >= {FSDP_PYTORCH_VERSION}")

        if fsdp_plugin is None:  # init from env variables
            fsdp_plugin = (
                FullyShardedDataParallelPlugin() if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true" else None
            )
        else:
            if not isinstance(fsdp_plugin, FullyShardedDataParallelPlugin):
                raise TypeError("`fsdp_plugin` must be a FullyShardedDataParallelPlugin object.")
            os.environ["ACCELERATE_USE_FSDP"] = "true"  # use FSDP if plugin is provided

        if megatron_lm_plugin is None:  # init from env variables
            megatron_lm_plugin = (
                MegatronLMPlugin() if os.environ.get("ACCELERATE_USE_MEGATRON_LM", "false") == "true" else None
            )
        else:
            if not isinstance(megatron_lm_plugin, MegatronLMPlugin):
                raise TypeError("`megatron_lm_plugin` must be a MegatronLMPlugin object.")
            os.environ["ACCELERATE_USE_MEGATRON_LM"] = "true"  # use MegatronLM if plugin is provided

        if megatron_lm_plugin:
            if not is_megatron_lm_available():
                raise ImportError("Megatron is not installed. please build it from source.")

        # Kwargs handlers
        self.ddp_handler = None
        self.scaler_handler = None
        self.init_handler = None
        self.fp8_recipe_handler = None
        if kwargs_handlers is not None:
            for handler in kwargs_handlers:
                assert isinstance(
                    handler, KwargsHandler
                ), f"Unsupported kwargs handler passed: {handler}, must be one that inherits `accelerate.utils.KwargsHandler`."
                if isinstance(handler, DistributedDataParallelKwargs):
                    if self.ddp_handler is not None:
                        raise ValueError("You can only pass one `DistributedDataParallelKwargs` in `kwargs_handler`.")
                    else:
                        self.ddp_handler = handler
                elif isinstance(handler, GradScalerKwargs):
                    if self.scaler_handler is not None:
                        raise ValueError("You can only pass one `GradScalerKwargs` in `kwargs_handler`.")
                    else:
                        self.scaler_handler = handler
                elif isinstance(handler, InitProcessGroupKwargs):
                    if self.init_handler is not None:
                        raise ValueError("You can only pass one `InitProcessGroupKwargs` in `kwargs_handler`.")
                    else:
                        self.init_handler = handler
                elif isinstance(handler, FP8RecipeKwargs):
                    if self.fp8_recipe_handler is not None:
                        raise ValueError("You can only pass one `FP8RecipeKwargs` in `kwargs_handler`.")
                    else:
                        self.fp8_recipe_handler = handler

        kwargs = self.init_handler.to_kwargs() if self.init_handler is not None else {}
        self.state = AcceleratorState(
            mixed_precision=mixed_precision,
            cpu=cpu,
            dynamo_plugin=dynamo_plugin,
            deepspeed_plugin=deepspeed_plugin,
            fsdp_plugin=fsdp_plugin,
            megatron_lm_plugin=megatron_lm_plugin,
            _from_accelerator=True,
            **kwargs,
        )

        trackers = filter_trackers(log_with, self.logging_dir)
        if len(trackers) < 1 and log_with is not None:
            warnings.warn(f"`log_with={log_with}` was passed but no supported trackers are currently installed.")
        self.log_with = trackers

        if (
            (mixed_precision != "bf16")
            and getattr(self.state, "downcast_bfloat", False)
            and (self.state.distributedType != DistributedType.TPU)
        ):
            raise ValueError("Can only use `downcast_bf16` when using `mixed_precision='bf16'` and on a TPU")

        if gradient_accumulation_plugin is not None:
            if gradient_accumulation_steps != 1:
                raise ValueError(
                    "You can only pass one of `gradient_accumulation_steps` and `gradient_accumulation_plugin`. Please only pass in the created `GradientAccumulationPlugin` object."
                )
        else:
            gradient_accumulation_steps = int(
                parse_choice_from_env("ACCELERATE_GRADIENT_ACCUMULATION_STEPS", gradient_accumulation_steps)
            )
            gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=gradient_accumulation_steps)
        self.gradient_state = GradientState(
            gradient_accumulation_plugin=gradient_accumulation_plugin,
        )
        if self.state.distributed_type == DistributedType.TPU:
            if self.gradient_state.num_steps != 1:
                raise ValueError(
                    "Gradient accumulation is not supported on TPU. Please set `gradient_accumulation_steps` to 1 and don't pass in a `GradientAccumulationPlugin` object."
                )

        self.device_placement = device_placement
        self.split_batches = split_batches
        self.dispatch_batches = dispatch_batches
        self.even_batches = even_batches
        self.step_scheduler_with_optimizer = step_scheduler_with_optimizer

        # Mixed precision attributes
        self.scaler = None
        self.native_amp = False
        err = "{mode} mixed precision requires {requirement}"
        if (
            self.state.mixed_precision == "fp16"
            and self.device.type != "cpu"
            and self.device.type != "xpu"
            and self.distributed_type not in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM)
        ):
            self.native_amp = True
            if self.device.type not in ("cuda", "mps", "npu"):
                raise ValueError(err.format(mode="fp16", requirement="a GPU"))
            kwargs = self.scaler_handler.to_kwargs() if self.scaler_handler is not None else {}
            if self.distributed_type == DistributedType.FSDP:
                from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler

                self.scaler = ShardedGradScaler(**kwargs)
            elif is_npu_available():
                self.scaler = torch.npu.amp.GradScaler(**kwargs)
            else:
                self.scaler = torch.cuda.amp.GradScaler(**kwargs)

        elif self.state.mixed_precision == "bf16" and self.distributed_type not in (
            DistributedType.DEEPSPEED,
            DistributedType.MEGATRON_LM,
        ):
            if self.device.type in ["cpu", "xpu"]:
                self.native_amp = True
            else:
                self.native_amp = is_bf16_available(True)
            if mixed_precision == "bf16" and not self.native_amp and not is_tpu_available():
                raise ValueError(err.format(mode="bf16", requirement="PyTorch >= 1.10 and a supported device."))

        # Start of internal step tracking
        self.step = 0

        # Internal references to the training objects
        self._optimizers = []
        self._models = []
        self._schedulers = []
        self._dataloaders = []
        self._custom_objects = []

        # Hooks
        self._load_model_state_pre_hook = OrderedDict()
        self._save_model_state_pre_hook = OrderedDict()

        # RNG Types
        self.rng_types = rng_types
        if self.rng_types is None:
            self.rng_types = ["generator"]

    @property
    def use_distributed(self):
        """
        Whether the Accelerator is configured for distributed training
        """
        return self.state.use_distributed

    @property
    def distributed_type(self):
        return self.state.distributed_type

    @property
    def num_processes(self):
        return self.state.num_processes

    @property
    def process_index(self):
        return self.state.process_index

    @property
    def local_process_index(self):
        return self.state.local_process_index

    @property
    def device(self):
        return self.state.device

    @property
    def project_dir(self):
        return self.project_configuration.project_dir

    @property
    def logging_dir(self):
        return self.project_configuration.logging_dir

    @property
    def save_iteration(self):
        return self.project_configuration.iteration

    @property
    def is_main_process(self):
        """True for one process only."""
        return self.state.is_main_process

    @property
    def is_local_main_process(self):
        """True for one process per server."""
        return self.state.is_local_main_process

    @property
    def use_fp16(self):
        warnings.warn(
            "The `use_fp16` property is deprecated and will be removed in version 1.0 of Accelerate use "
            "`Accelerator.mixed_precision == 'fp16'` instead.",
            FutureWarning,
        )
        return self.mixed_precision != "no"

    @property
    def is_last_process(self):
        return self.process_index == self.num_processes - 1

    @property
    def mixed_precision(self):
        return self.state.mixed_precision

    @contextmanager
    def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool = False):
        """
        Splits `input` between `self.num_processes` quickly and can be then used on that process. Useful when doing
        distributed inference, such as with different prompts.

        Note that when using a `dict`, all keys need to have the same number of elements.

        Args:
            inputs (`list`, `tuple`, `torch.Tensor`, or `dict` of `list`/`tuple`/`torch.Tensor`):
                The input to split between processes.
            apply_padding (`bool`, `optional`, defaults to `False`):
                Whether to apply padding by repeating the last element of the input so that all processes have the same
                number of elements. Useful when trying to perform actions such as `Accelerator.gather()` on the outputs
                or passing in less inputs than there are processes. If so, just remember to drop the padded elements
                afterwards.

        Example:

        ```python
        # Assume there are two processes
        from accelerate import Accelerator

        accelerator = Accelerator()
        with accelerator.split_between_processes(["A", "B", "C"]) as inputs:
            print(inputs)
        # Process 0
        ["A", "B"]
        # Process 1
        ["C"]

        with accelerator.split_between_processes(["A", "B", "C"], apply_padding=True) as inputs:
            print(inputs)
        # Process 0
        ["A", "B"]
        # Process 1
        ["C", "C"]
        ```
        """
        with PartialState().split_between_processes(inputs, apply_padding=apply_padding) as inputs:
            yield inputs

    def on_main_process(self, function: Callable[..., Any] = None):
        """
        A decorator that will run the decorated function on the main process only. Can also be called using the
        `PartialState` class.

        Args:
            function (`Callable`): The function to decorate.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()


        >>> @accelerator.on_main_process
        ... def print_something():
        ...     print("This will be printed by process 0 only.")


        >>> print_something()
        "This will be printed by process 0 only"
        ```
        """
        # For times when the `Accelerator` object itself utilizes this decorator.
        if function is None:
            if "Accelerator." in self.__qualname__:
                function = self
            else:
                raise ValueError(
                    "The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object."
                )

        def _inner(*args, **kwargs):
            return PartialState().on_main_process(function)(*args, **kwargs)

        return _inner

    def on_local_main_process(self, function: Callable[..., Any] = None):
        """
        A decorator that will run the decorated function on the local main process only. Can also be called using the
        `PartialState` class.

        Args:
            function (`Callable`): The function to decorate.

        Example:
        ```python
        # Assume we have 2 servers with 4 processes each.
        from accelerate import Accelerator

        accelerator = Accelerator()


        @accelerator.on_local_main_process
        def print_something():
            print("This will be printed by process 0 only on each server.")


        print_something()
        # On server 1:
        "This will be printed by process 0 only"
        # On server 2:
        "This will be printed by process 0 only"
        ```
        """
        # For times when the `Accelerator` object itself utilizes this decorator.
        if function is None:
            if "Accelerator." in self.__qualname__:
                function = self
            else:
                raise ValueError(
                    "The `on_local_main_process` decorator must be called with a function on an instantiated `Accelerator` object."
                )

        def _inner(*args, **kwargs):
            return PartialState().on_local_main_process(function)(*args, **kwargs)

        return _inner

    def on_last_process(self, function: Callable[..., Any]):
        """
        A decorator that will run the decorated function on the last process only. Can also be called using the
        `PartialState` class.

        Args:
            function (`Callable`): The function to decorate.

        Example:
        ```python
        # Assume we have 4 processes.
        from accelerate import Accelerator

        accelerator = Accelerator()


        @accelerator.on_last_process
        def print_something():
            print(f"Printed on process {accelerator.process_index}")


        print_something()
        "Printed on process 3"
        ```
        """
        # For times when the `Accelerator` object itself utilizes this decorator.
        if function is None:
            if "Accelerator." in self.__qualname__:
                function = self
            else:
                raise ValueError(
                    "The `on_last_process` decorator must be called with a function on an instantiated `Accelerator` object."
                )

        def _inner(*args, **kwargs):
            return PartialState().on_last_process(function)(*args, **kwargs)

        return _inner

    def on_process(self, function: Callable[..., Any] = None, process_index: int = None):
        """
        A decorator that will run the decorated function on a given process index only. Can also be called using the
        `PartialState` class.

        Args:
            function (`Callable`, `optional`):
                The function to decorate.
            process_index (`int`, `optional`):
                The index of the process on which to run the function.

        Example:
        ```python
        # Assume we have 4 processes.
        from accelerate import Accelerator

        accelerator = Accelerator()


        @accelerator.on_process(process_index=2)
        def print_something():
            print(f"Printed on process {accelerator.process_index}")


        print_something()
        "Printed on process 2"
        ```
        """
        # Initial construction of the decorator.
        if (self is not None) and (process_index is not None) and (function is None):
            return partial(self.on_process, process_index=process_index)
        # For times when the `Accelerator` object itself utilizes this decorator.
        if function is None:
            if "Accelerator." in self.__qualname__:
                function = self
            else:
                raise ValueError(
                    "The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object."
                )

        def _inner(*args, **kwargs):
            return PartialState().on_process(function, process_index)(*args, **kwargs)

        return _inner

    def on_local_process(self, function: Callable[..., Any] = None, local_process_index: int = None):
        """
        A decorator that will run the decorated function on a given local process index only. Can also be called using
        the `PartialState` class.

        Args:
            function (`Callable`, *optional*):
                The function to decorate.
            local_process_index (`int`, *optional*):
                The index of the local process on which to run the function.

        Example:
        ```python
        # Assume we have 2 servers with 4 processes each.
        from accelerate import Accelerator

        accelerator = Accelerator()


        @accelerator.on_local_process(local_process_index=2)
        def print_something():
            print(f"Printed on process {accelerator.local_process_index}")


        print_something()
        # On server 1:
        "Printed on process 2"
        # On server 2:
        "Printed on process 2"
        ```
        """
        # Initial construction of the decorator.
        if (self is not None) and (local_process_index is not None) and (function is None):
            return partial(self.on_local_process, local_process_index=local_process_index)
        # For times when the `Accelerator` object itself utilizes this decorator.
        if function is None:
            if "Accelerator." in self.__qualname__:
                function = self
            else:
                raise ValueError(
                    "The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object."
                )

        def _inner(*args, **kwargs):
            return PartialState().on_local_process(function, local_process_index)(*args, **kwargs)

        return _inner

    @contextmanager
    def main_process_first(self):
        """
        Lets the main process go first inside a with block.

        The other processes will enter the with block after the main process exits.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> with accelerator.main_process_first():
        ...     # This will be printed first by process 0 then in a seemingly
        ...     # random order by the other processes.
        ...     print(f"This will be printed by process {accelerator.process_index}")
        ```
        """
        with self.state.main_process_first():
            yield

    @contextmanager
    def local_main_process_first(self):
        """
        Lets the local main process go inside a with block.

        The other processes will enter the with block after the main process exits.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> with accelerator.local_main_process_first():
        ...     # This will be printed first by local process 0 then in a seemingly
        ...     # random order by the other processes.
        ...     print(f"This will be printed by process {accelerator.local_process_index}")
        ```
        """
        with self.state.local_main_process_first():
            yield

    @contextmanager
    def no_sync(self, model):
        """
        A context manager to disable gradient synchronizations across DDP processes by calling
        `torch.nn.parallel.DistributedDataParallel.no_sync`.

        If `model` is not in DDP, this context manager does nothing

        Args:
            model (`torch.nn.Module`):
                PyTorch Module that was prepared with `Accelerator.prepare`

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> dataloader, model, optimizer = accelerator.prepare(dataloader, model, optimizer)
        >>> input_a = next(iter(dataloader))
        >>> input_b = next(iter(dataloader))

        >>> with accelerator.no_sync():
        ...     outputs = model(input_a)
        ...     loss = loss_func(outputs)
        ...     accelerator.backward(loss)
        ...     # No synchronization across processes, only accumulate gradients
        >>> outputs = model(input_b)
        >>> accelerator.backward(loss)
        >>> # Synchronization across all processes
        >>> optimizer.step()
        >>> optimizer.zero_grad()
        ```
        """
        context = contextlib.nullcontext
        if self.use_distributed:
            context = getattr(model, "no_sync", context)

        with context():
            yield

    def _do_sync(self):
        "Sets the right `sync_gradients` context and either resets or increases `self.step`"
        if self.gradient_state.sync_with_dataloader and self.gradient_state.end_of_dataloader:
            self.step = 0
            self.gradient_state._set_sync_gradients(True)
        else:
            self.step += 1
            self.gradient_state._set_sync_gradients((self.step % self.gradient_state.num_steps) == 0)

    @property
    def sync_gradients(self):
        return self.gradient_state.sync_gradients

    @sync_gradients.setter
    def sync_gradients(self, sync_gradients):
        self.gradient_state.sync_gradients = sync_gradients

    @property
    def gradient_accumulation_steps(self):
        return self.gradient_state.num_steps

    @gradient_accumulation_steps.setter
    def gradient_accumulation_steps(self, gradient_accumulation_steps):
        self.gradient_state.plugin_kwargs.update({"num_steps": gradient_accumulation_steps})

    @contextmanager
    def accumulate(self, model):
        """
        A context manager that will lightly wrap around and perform gradient accumulation automatically

        Args:
            model (`torch.nn.Module`):
                PyTorch Module that was prepared with `Accelerator.prepare`

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(gradient_accumulation_steps=1)
        >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler)

        >>> for input, output in dataloader:
        ...     with accelerator.accumulate(model):
        ...         outputs = model(input)
        ...         loss = loss_func(outputs)
        ...         loss.backward()
        ...         optimizer.step()
        ...         scheduler.step()
        ...         optimizer.zero_grad()
        ```
        """
        self._do_sync()
        if self.sync_gradients:
            context = contextlib.nullcontext
        else:
            context = self.no_sync

        with context(model):
            yield

    @contextmanager
    def join_uneven_inputs(self, joinables, even_batches=None):
        """
        A context manager that facilitates distributed training or evaluation on uneven inputs, which acts as a wrapper
        around `torch.distributed.algorithms.join`. This is useful when the total batch size does not evenly divide the
        length of the dataset.

        Args:
            joinables (`list[torch.distributed.algorithms.Joinable]`):
                A list of models or optimizers that subclass `torch.distributed.algorithms.Joinable`. Most commonly, a
                PyTorch Module that was prepared with `Accelerator.prepare` for DistributedDataParallel training.
            even_batches (`bool`, *optional*)
                If set, this will override the value of `even_batches` set in the `Accelerator`. If it is not provided,
                the default `Accelerator` value wil be used.

        <Tip warning={true}>

        `join_uneven_inputs` is only supported for Distributed Data Parallel training on multiple GPUs. For any other
        configuration, this method will have no effect.

        </Tip>

        <Tip warning={true}>

        Overidding `even_batches` will not affect iterable-style data loaders.

        </Tip>

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(even_batches=True)
        >>> ddp_model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

        >>> with accelerator.join_uneven_inputs([ddp_model], even_batches=False):
        ...     for input, output in dataloader:
        ...         outputs = model(input)
        ...         loss = loss_func(outputs)
        ...         loss.backward()
        ...         optimizer.step()
        ...         optimizer.zero_grad()
        ```
        """
        if self.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU):
            dl_even_batches_values = []

            if even_batches is not None:
                iterable_dl_seen = False
                # override value in batch sampler for map-style datasets
                for dl_idx, dl in enumerate(self._dataloaders):
                    if isinstance(dl, DataLoaderDispatcher):
                        iterable_dl_seen = True
                        continue
                    dl_even_batches_values.append((dl_idx, dl.batch_sampler.even_batches))
                    dl.batch_sampler.even_batches = even_batches

                if iterable_dl_seen:
                    warnings.warn(
                        "Overridding even_batches is only supported for map-style datasets, yet some dataloaders given were iterable"
                    )
            else:
                even_batches = self.even_batches

            enable_join = False if even_batches else True
            try:
                with Join(joinables, enable=enable_join, throw_on_early_termination=False):
                    yield
            finally:
                # reset any batch samplers that have been modified
                for dl_idx, even_batches_value in dl_even_batches_values:
                    self._dataloaders[dl_idx].batch_sampler.even_batches = even_batches_value
        else:
            # Even when disabled, Join expects models to subclass Joinable, so skip entirely for single process runs
            if self.distributed_type != DistributedType.NO:
                warnings.warn(
                    "Joining uneven inputs is only supported for multi-GPU training, as a result `join_uneven_inputs` will have no effect."
                )

            with contextlib.nullcontext(joinables):
                yield

    def print(self, *args, **kwargs):
        """
        Drop in replacement of `print()` to only print once per server.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> accelerator.print("Hello world!")
        ```
        """
        self.state.print(*args, **kwargs)

    def _prepare_one(self, obj, first_pass=False, device_placement=None):
        # First pass of preparation: DataLoader, model, optimizer
        if first_pass:
            if isinstance(obj, torch.utils.data.DataLoader):
                return self.prepare_data_loader(obj, device_placement=device_placement)
            elif isinstance(obj, torch.nn.Module):
                return self.prepare_model(obj, device_placement=device_placement)
            elif isinstance(obj, torch.optim.Optimizer):
                optimizer = self.prepare_optimizer(obj, device_placement=device_placement)
                return optimizer
        # Second pass of preparation: LR scheduler (which need the full list of optimizers)
        elif isinstance(obj, LRScheduler):
            scheduler = self.prepare_scheduler(obj)
            return scheduler
        # Return the unprocessed object if previous criteria was not met
        return obj

    def _prepare_fsdp(self, *args):
        result = []
        for obj in args:
            if isinstance(obj, torch.nn.Module):
                model = obj
                break
        optimizers = []

        self._schedulers = []
        self._models = []
        intermediate_result = []
        for obj in args:
            if isinstance(obj, torch.optim.Optimizer):
                if len(obj.param_groups) > 1:
                    logger.warning(
                        "FSDP Warning: When using FSDP, several parameter groups will be conflated into "
                        "a single one due to nested module wrapping and parameter flattening."
                    )
                try:
                    optimizer = obj.optimizer.__class__(model.parameters(), **obj.optimizer.defaults)
                except TypeError:
                    if "differentiable" in obj.optimizer.defaults:
                        # https://github.com/huggingface/accelerate/issues/801
                        defaults = {k: v for k, v in obj.optimizer.defaults.items() if k != "differentiable"}
                        optimizer = obj.optimizer.__class__(model.parameters(), **defaults)
                    else:
                        raise
                obj = self.prepare_optimizer(optimizer)
                optimizers.append(obj)
            elif isinstance(obj, torch.nn.Module):
                self._models.append(obj)
            intermediate_result.append(obj)

        for obj in intermediate_result:
            if isinstance(obj, AcceleratedScheduler):
                obj.optimizer = optimizers
                for i, opt in enumerate(self._optimizers):
                    if getattr(obj.scheduler, "optimizer", None) == opt.optimizer:
                        obj.scheduler.optimizer = optimizers[i]
                        obj.optimizers = [optimizers[i]]
                        break
                self._schedulers.append(obj)
            result.append(obj)
        self._optimizers = optimizers
        return tuple(result)

    def prepare(self, *args, device_placement=None):
        """
        Prepare all objects passed in `args` for distributed training and mixed precision, then return them in the same
        order.

        Args:
            *args (list of objects):
                Any of the following type of objects:

                - `torch.utils.data.DataLoader`: PyTorch Dataloader
                - `torch.nn.Module`: PyTorch Module
                - `torch.optim.Optimizer`: PyTorch Optimizer
                - `torch.optim.lr_scheduler.LRScheduler`: PyTorch LR Scheduler

            device_placement (`list[bool]`, *optional*):
                Used to customize whether automatic device placement should be performed for each object passed. Needs
                to be a list of the same length as `args`. Not compatible with DeepSpeed or FSDP.

        <Tip>

          You don't need to prepare a model if you only use it for inference without any kind of mixed precision

        </Tip>

        Examples:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> # Assume a model, optimizer, data_loader and scheduler are defined
        >>> model, optimizer, data_loader, scheduler = accelerator.prepare(model, optimizer, data_loader, scheduler)
        ```

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> # Assume a model, optimizer, data_loader and scheduler are defined
        >>> device_placement = [True, True, False, False]
        >>> # Will place the first to items passed in automatically to the right device but not the last two.
        >>> model, optimizer, data_loader, scheduler = accelerator.prepare(
        ...     model, optimizer, data_loader, scheduler, device_placement=device_placement
        ... )
        ```
        """
        if device_placement is None:
            device_placement = [None for _ in args]
        elif self.distributed_type in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM):
            raise ValueError("You can't customize device placements with DeepSpeed or Megatron-LM.")
        elif len(device_placement) != len(args):
            raise ValueError(
                f"`device_placement` should be a list with {len(args)} elements (the number of objects passed)."
            )

        if self.distributed_type == DistributedType.FSDP:
            model_count = 0
            optimizer_present = False
            for obj in args:
                if isinstance(obj, torch.nn.Module):
                    model_count += 1
                if isinstance(obj, torch.optim.Optimizer):
                    optimizer_present = True
            if model_count > 1 and optimizer_present:
                raise ValueError(
                    "For FSDP to work with multiple models (>1), "
                    "prepare must be called for all the models before optimizers are created. "
                    "Then pass the optimizers to the prepare call in the same order as corresponding models."
                )
            elif model_count == 1 and optimizer_present:
                logger.warning(
                    "FSDP Warning: When using FSDP, "
                    "it is efficient and recommended to call prepare for the model before creating the optimizer"
                )

        if self.distributed_type == DistributedType.DEEPSPEED:
            model_count = 0
            for obj in args:
                if isinstance(obj, torch.nn.Module):
                    model_count += 1
            if model_count > 1:
                raise AssertionError(
                    "You can't use same `Accelerator()` instance with multiple models when using DeepSpeed"
                )

        # On TPUs, putting the model on the XLA device will create new parameters, so the corresponding optimizer will
        # have parameters disconnected from the model (so no training :-( ).
        # If the model and optimizer have parameters on different devices we raise an error.
        if self.distributed_type == DistributedType.TPU:
            model_device, optimizer_device = self._get_devices()
            if model_device is not None and optimizer_device is not None and model_device != optimizer_device:
                raise ValueError(
                    "The model and the optimizer parameters are not on the same device, which probably means you "
                    "created an optimizer around your model **before** putting on the device. Make sure the line "
                    "model.to(device) is before the optimizer creation in your script or remove it entirely and use "
                    "the flag default value for `device_placement` in your `Accelerator` to let it handle that "
                    "part for you."
                )

        # If we're dealing with device placement, this deals with that by...
        tpu_should_fix_optimizer = self.device_placement and self.distributed_type == DistributedType.TPU
        if tpu_should_fix_optimizer or self.mixed_precision == "fp8":
            # 1. grabbing old model parameters
            old_named_params = self._get_named_parameters(*args)

        if self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.NO]:
            if self.device.type == "cpu" and self.state.use_ipex:
                args = self._prepare_ipex(*args)
            elif self.device.type == "xpu" and is_xpu_available():
                args = self._prepare_ipex(*args)
        if self.distributed_type == DistributedType.DEEPSPEED:
            result = self._prepare_deepspeed(*args)
        elif self.distributed_type == DistributedType.MEGATRON_LM:
            result = self._prepare_megatron_lm(*args)
        else:
            result = tuple(
                self._prepare_one(obj, first_pass=True, device_placement=d) for obj, d in zip(args, device_placement)
            )
            result = tuple(self._prepare_one(obj, device_placement=d) for obj, d in zip(result, device_placement))

        if tpu_should_fix_optimizer or self.mixed_precision == "fp8":
            # 2. grabbing new model parameters
            new_named_params = self._get_named_parameters(*result)
            # 3. building a map from the first to the second
            mapping = {p: new_named_params[n] for n, p in old_named_params.items()}
            # 4. using that map to update the parameters of the optimizer
            for obj in result:
                if isinstance(obj, torch.optim.Optimizer):
                    obj._switch_parameters(mapping)

        if self.distributed_type == DistributedType.FSDP and model_count == 1 and optimizer_present:
            result = self._prepare_fsdp(*result)

        for item in result:
            if any(
                item in container
                for container in (self._dataloaders, self._models, self._optimizers, self._schedulers)
            ):
                setattr(item, "_is_accelerate_prepared", True)

        return result if len(result) > 1 else result[0]

    def prepare_model(self, model: torch.nn.Module, device_placement: bool = None, evaluation_mode: bool = False):
        """
        Prepares a PyTorch model for training in any distributed setup. It is recommended to use
        [`Accelerator.prepare`] instead.

        Args:
            model (`torch.nn.Module`):
                A PyTorch model to prepare. You don't need to prepare a model if it is used only for inference without
                any kind of mixed precision
            device_placement (`bool`, *optional*):
                Whether or not to place the model on the proper device. Will default to `self.device_placement`.
            evaluation_mode (`bool`, *optional*, defaults to `False`):
                Whether or not to set the model for evaluation only, by just applying mixed precision and
                `torch.compile` (if configured in the `Accelerator` object).

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> # Assume a model is defined
        >>> model = accelerator.prepare_model(model)
        ```
        """
        if device_placement is None:
            device_placement = self.device_placement and self.distributed_type != DistributedType.FSDP
        self._models.append(model)
        # We check only for models loaded with `accelerate`
        # Checks if any of the child module has the attribute `hf_device_map`.
        has_hf_device_map = False
        for m in model.modules():
            if hasattr(m, "hf_device_map"):
                has_hf_device_map = True
                break

        if (getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False)) and getattr(
            model, "hf_device_map", False
        ):
            model_devices = set(model.hf_device_map.values())
            if len(model_devices) > 1 and self.distributed_type != DistributedType.NO:
                raise ValueError(
                    "You can't train a model that has been loaded in 8-bit precision on multiple devices in any distributed mode."
                    " In order to use 8-bit models that have been loaded across multiple GPUs the solution is to use Naive Pipeline Parallelism."
                    " Therefore you should not specify that you are under any distributed regime in your accelerate config."
                )
            current_device = list(model_devices)[0]
            current_device_index = current_device.index if isinstance(current_device, torch.device) else current_device

            if torch.device(current_device_index) != self.device:
                # if on the first device (GPU 0) we don't care
                if (self.device.index is not None) or (current_device_index != 0):
                    raise ValueError(
                        "You can't train a model that has been loaded in 8-bit precision on a different device than the one "
                        "you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device()}"
                        "you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device() or device_map={'':torch.xpu.current_device()}"
                    )

            if "cpu" in model_devices or "disk" in model_devices:
                raise ValueError(
                    "You can't train a model that has been loaded in 8-bit precision with CPU or disk offload."
                )
        elif device_placement and not has_hf_device_map:
            model = model.to(self.device)

        if self.native_amp:
            model._original_forward = model.forward
            model_forward_func = model.forward.__func__ if hasattr(model.forward, "__func__") else model.forward
            if self.mixed_precision == "fp16":
                if is_npu_available():
                    new_forward = torch.npu.amp.autocast(dtype=torch.float16)(model_forward_func)
                else:
                    new_forward = torch.cuda.amp.autocast(dtype=torch.float16)(model_forward_func)
            elif self.mixed_precision == "bf16" and self.distributed_type != DistributedType.TPU:
                new_forward = torch.autocast(device_type=self.device.type, dtype=torch.bfloat16)(model_forward_func)

            if hasattr(model.forward, "__func__"):
                model.forward = MethodType(new_forward, model)
                model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model)
            else:
                model.forward = convert_outputs_to_fp32(new_forward)
        elif self.mixed_precision == "fp8":
            if not has_transformer_engine_layers(model):
                with torch.no_grad():
                    convert_model(model)
                model._converted_to_transformer_engine = True
            model._original_forward = model.forward

            kwargs = self.fp8_recipe_handler.to_kwargs() if self.fp8_recipe_handler is not None else {}
            if "fp8_format" in kwargs:
                kwargs["fp8_format"] = getattr(te_recipe.Format, kwargs["fp8_format"])
            fp8_recipe = te_recipe.DelayedScaling(**kwargs)
            cuda_device_capacity = torch.cuda.get_device_capability()
            fp8_enabled = cuda_device_capacity[0] >= 9 or (
                cuda_device_capacity[0] == 8 and cuda_device_capacity[1] >= 9
            )
            if not fp8_enabled:
                logger.warn(
                    f"The current device has compute capability of {cuda_device_capacity} which is "
                    "insufficient for FP8 mixed precision training (requires a GPU Hopper/Ada Lovelace "
                    "or higher, compute capability of 8.9 or higher). Will use FP16 instead."
                )
            model.forward = fp8_autocast(enabled=fp8_enabled, fp8_recipe=fp8_recipe)(model.forward)
        if not evaluation_mode:
            if self.distributed_type in (
                DistributedType.MULTI_GPU,
                DistributedType.MULTI_NPU,
                DistributedType.MULTI_XPU,
            ):
                if any(p.requires_grad for p in model.parameters()):
                    kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {}
                    model = torch.nn.parallel.DistributedDataParallel(
                        model, device_ids=[self.local_process_index], output_device=self.local_process_index, **kwargs
                    )
            elif self.distributed_type == DistributedType.FSDP:
                from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP

                # Check if the model is already a FSDP model due to `Manual Wrapping` and if so,
                # don't wrap it again
                if type(model) != FSDP:
                    self.state.fsdp_plugin.set_auto_wrap_policy(model)
                    fsdp_plugin = self.state.fsdp_plugin
                    kwargs = {
                        "sharding_strategy": fsdp_plugin.sharding_strategy,
                        "cpu_offload": fsdp_plugin.cpu_offload,
                        "auto_wrap_policy": fsdp_plugin.auto_wrap_policy,
                        "mixed_precision": fsdp_plugin.mixed_precision_policy,
                        "sync_module_states": fsdp_plugin.sync_module_states,
                        "backward_prefetch": fsdp_plugin.backward_prefetch,
                        "forward_prefetch": fsdp_plugin.forward_prefetch,
                        "use_orig_params": fsdp_plugin.use_orig_params,
                        "param_init_fn": fsdp_plugin.param_init_fn,
                        "ignored_modules": fsdp_plugin.ignored_modules,
                        "ignored_parameters": fsdp_plugin.ignored_parameters,
                        "limit_all_gathers": fsdp_plugin.limit_all_gathers,
                        "device_id": self.device,
                    }
                    model = FSDP(model, **kwargs)
                self._models[-1] = model
            elif self.distributed_type == DistributedType.MULTI_CPU:
                kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {}
                model = torch.nn.parallel.DistributedDataParallel(model, **kwargs)
            elif self.distributed_type == DistributedType.TPU and self.state.fork_launched:
                model = xmp.MpModelWrapper(model).to(self.device)
        # torch.compile should be called last.
        if self.state.dynamo_plugin.backend != DynamoBackend.NO:
            if not is_torch_version(">=", "2.0"):
                raise ValueError("Using `torch.compile` requires PyTorch 2.0 or higher.")
            model = torch.compile(model, **self.state.dynamo_plugin.to_kwargs())
        return model

    def _prepare_deepspeed(self, *args):
        deepspeed_plugin = self.state.deepspeed_plugin

        is_dataloader_present = any(isinstance(obj, torch.utils.data.DataLoader) for obj in args)
        if deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] == "auto" or is_dataloader_present:
            result = [
                self._prepare_one(obj, first_pass=True) if isinstance(obj, torch.utils.data.DataLoader) else obj
                for obj in args
            ]

            batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")]
            if self.split_batches:
                batch_sizes = [batch_size // self.num_processes for batch_size in batch_sizes]

            if any(bs is None for bs in batch_sizes):
                raise ValueError(
                    "At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size."
                    "Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file"
                    "or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
                )
            if len(batch_sizes) == 0:
                raise ValueError(
                    "When using DeepSpeed `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders "
                    "or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file"
                    "or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
                )

            batch_size_per_device = min(batch_sizes) if deepspeed_plugin.is_train_batch_min else max(batch_sizes)
            if len(batch_sizes) > 1:
                logger.info(
                    "Since you passed both train and evaluation dataloader, `is_train_batch_min` (here "
                    f"{deepspeed_plugin.is_train_batch_min} will decide the `train_batch_size` ({batch_size_per_device})."
                )
        else:
            batch_size_per_device = deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"]
            result = [obj for obj in args]

        if self.gradient_accumulation_steps != deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"]:
            logger.info(
                f"Updating DeepSpeed's gradient accumulation steps to {self.gradient_accumulation_steps} from "
                f"{deepspeed_plugin.deepspeed_config['gradient_accumulation_steps']}."
            )
            deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] = self.gradient_accumulation_steps
        config_kwargs = {
            "train_micro_batch_size_per_gpu": batch_size_per_device,
            "train_batch_size": batch_size_per_device
            * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"]
            * self.num_processes,
            "gradient_clipping": 1.0,
            "zero_optimization.stage3_gather_16bit_weights_on_model_save": False,
        }

        model = None
        optimizer = None
        scheduler = None
        for obj in result:
            if isinstance(obj, torch.nn.Module):
                model = obj
            elif isinstance(obj, (torch.optim.Optimizer, DummyOptim)):
                optimizer = obj
            elif (isinstance(obj, (LRScheduler, DummyScheduler))) or (
                type(obj).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES
            ):
                scheduler = obj

        if optimizer is not None:
            if "optimizer" in deepspeed_plugin.deepspeed_config and not isinstance(optimizer, (DummyOptim)):
                raise ValueError(
                    "You cannot specify an optimizer in the config file and in the code at the same time. "
                    "Please remove the optimizer from the config file or "
                    "create `accelerate.utils.DummyOptim` in the code."
                )
            elif "optimizer" not in deepspeed_plugin.deepspeed_config and isinstance(optimizer, (DummyOptim)):
                raise ValueError(
                    "You cannot create a `DummyOptim` without specifying an optimizer in the config file."
                )

            if isinstance(optimizer, (torch.optim.Optimizer)):
                deepspeed_plugin.deepspeed_config["zero_allow_untested_optimizer"] = True

        if scheduler is not None:
            if "scheduler" in deepspeed_plugin.deepspeed_config and not isinstance(scheduler, (DummyScheduler)):
                raise ValueError(
                    "You cannot specify a scheduler in the config file and in the code at the same time. "
                    "Please remove the scheduler from the config file or "
                    "create `accelerate.utils.DummyScheduler` in the code."
                )
            elif "scheduler" not in deepspeed_plugin.deepspeed_config and isinstance(scheduler, (DummyScheduler)):
                raise ValueError(
                    "You cannot create a `DummyScheduler` without specifying a scheduler in the config file."
                )

        if optimizer is not None and scheduler is not None:
            if isinstance(optimizer, (DummyOptim)) and not isinstance(scheduler, (DummyScheduler)):
                raise ValueError(
                    "You can only specify `accelerate.utils.DummyScheduler` in the code when using "
                    "`accelerate.utils.DummyOptim`."
                )

        if model is not None:
            if hasattr(model, "config"):
                hidden_size = (
                    max(model.config.hidden_sizes)
                    if getattr(model.config, "hidden_sizes", None)
                    else getattr(model.config, "hidden_size", None)
                )
                if hidden_size is not None:
                    config_kwargs.update(
                        {
                            "zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
                            "zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
                            "zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
                        }
                    )

            if isinstance(optimizer, (DummyOptim)):
                config_kwargs.update(
                    {"optimizer.params.lr": optimizer.lr, "optimizer.params.weight_decay": optimizer.weight_decay}
                )
            if isinstance(scheduler, (DummyScheduler)):
                max_lr = (
                    getattr(scheduler.optimizer, "lr", None)
                    if getattr(scheduler.optimizer, "defaults", None) is None
                    else scheduler.optimizer.defaults["lr"]
                )
                config_kwargs.update(
                    {
                        "scheduler.params.warmup_min_lr": 0,
                        "scheduler.params.warmup_max_lr": max_lr,
                        "scheduler.params.warmup_num_steps": scheduler.warmup_num_steps,
                    }
                )
                if scheduler.total_num_steps is not None:
                    config_kwargs["scheduler.params.total_num_steps"] = (
                        math.ceil(scheduler.total_num_steps / self.num_processes)
                        if not self.split_batches
                        else scheduler.total_num_steps
                    )
            deepspeed_plugin.deepspeed_config_process(must_match=False, **config_kwargs)
            self.deepspeed_config = deepspeed_plugin.deepspeed_config
            kwargs = dict(model=model, config_params=self.deepspeed_config)
            if optimizer is not None:
                if isinstance(optimizer, (DummyOptim)):
                    kwargs["model_parameters"] = optimizer.params
                else:
                    if self.deepspeed_config["zero_optimization"].get("offload_optimizer", {}).get(
                        "device", "none"
                    ) != "none" and self.deepspeed_config.get("zero_force_ds_cpu_optimizer", True):
                        from deepspeed.ops.adam import DeepSpeedCPUAdam

                        defaults = {k: v for k, v in optimizer.defaults.items() if k in ["lr", "weight_decay"]}
                        optimizer = DeepSpeedCPUAdam(optimizer.param_groups, **defaults)
                    kwargs["optimizer"] = optimizer
                    if scheduler is not None:
                        if type(scheduler).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES:
                            kwargs["lr_scheduler"] = scheduler

            engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs)
            if optimizer is not None:
                optimizer = DeepSpeedOptimizerWrapper(optimizer)
            if scheduler is not None:
                if lr_scheduler is None:
                    scheduler = AcceleratedScheduler(
                        scheduler,
                        optimizer,
                        step_with_optimizer=self.step_scheduler_with_optimizer,
                        split_batches=self.split_batches,
                    )
                else:
                    scheduler = DeepSpeedSchedulerWrapper(lr_scheduler, optimizer)

            for i in range(len(result)):
                if isinstance(result[i], torch.nn.Module):
                    result[i] = engine
                elif isinstance(result[i], (torch.optim.Optimizer, DummyOptim)):
                    result[i] = optimizer
                elif (isinstance(result[i], (LRScheduler, DummyScheduler))) or (
                    type(result[i]).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES
                ):
                    result[i] = scheduler
            # pointing for deepspeed_engine_wrapped.backward()
            self.deepspeed_engine_wrapped = DeepSpeedEngineWrapper(engine)
            self._models.append(engine)
            if optimizer is not None:
                self._optimizers.append(optimizer)
            if scheduler is not None:
                self._schedulers.append(scheduler)
            if len(self._models) > 1:
                raise AssertionError(
                    "You can't use same `Accelerator()` instance with multiple models when using DeepSpeed"
                )
        return tuple(result)

    def _prepare_megatron_lm(self, *args):
        megatron_lm_plugin = self.state.megatron_lm_plugin
        if not megatron_lm_plugin.megatron_dataset_flag:
            batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")]
            if len(batch_sizes) == 0:
                raise ValueError(
                    "You must specify a training or evaluation dataloader in `accelerate.prepare()` when using Megatron-LM."
                )

            micro_batch_size = min(batch_sizes) if megatron_lm_plugin.is_train_batch_min else max(batch_sizes)
            if len(batch_sizes) > 1:
                logger.info(
                    "Since you passed both train and evaluation dataloader, `is_train_batch_min` (here "
                    f"{megatron_lm_plugin.is_train_batch_min} will decide the `train_batch_size` ({micro_batch_size})."
                )
        else:
            for obj in args:
                if isinstance(obj, MegatronLMDummyDataLoader):
                    micro_batch_size = obj.dataset_args["micro_batch_size"]
                    break

        dp_degree = self.num_processes // (megatron_lm_plugin.tp_degree * megatron_lm_plugin.pp_degree)
        megatron_lm_plugin.set_training_args(micro_batch_size, dp_degree)

        model = None
        optimizer = None
        scheduler = None
        is_dummy_scheduler = False
        batch_data = None
        for obj in args:
            if isinstance(obj, torch.utils.data.DataLoader) and batch_data is None:
                batch_data = next(iter(obj))
            if isinstance(obj, torch.nn.Module):
                model = obj
            elif isinstance(obj, (torch.optim.Optimizer)):
                optimizer = obj
            elif isinstance(obj, (LRScheduler, MegatronLMDummyScheduler)):
                scheduler = obj

        if model is not None:
            megatron_lm_plugin.set_network_size_args(model, batch_data)
        if optimizer is not None:
            megatron_lm_plugin.set_optimizer_type(optimizer)
        if scheduler is not None:
            is_dummy_scheduler = isinstance(scheduler, MegatronLMDummyScheduler)
            if not is_dummy_scheduler:
                raise ValueError(
                    "You can't use a custom scheduler with Megatron-LM. Please use the `accelerate.utils.MegatronLMDummyScheduler` instead."
                )
            megatron_lm_plugin.set_scheduler_args(scheduler)

        # initialize megatron-lm
        megatron_lm_initialize(self, args_defaults=megatron_lm_plugin.megatron_lm_default_args)
        counter = 0
        result = []
        for obj in args:
            if isinstance(obj, torch.utils.data.DataLoader):
                result.append(megatron_lm_prepare_data_loader(self, obj))
                counter += 1
            elif isinstance(obj, MegatronLMDummyDataLoader):
                if counter == 0:
                    obj.set_megatron_data_args()
                    dataloaders = megatron_lm_prepare_data_loader(self, obj)
                result.append(dataloaders[counter])
                counter += 1
            else:
                result.append(obj)

        if model is not None:
            model = megatron_lm_prepare_model(self)
        if optimizer is not None:
            optimizer = megatron_lm_prepare_optimizer(self, model)
        if scheduler is not None:
            scheduler = megatron_lm_prepare_scheduler(self, optimizer, scheduler)

        if model is not None:
            model = MegatronEngine(self, model, optimizer, scheduler)
        if optimizer is not None:
            optimizer = MegatronLMOptimizerWrapper(optimizer)
        if scheduler is not None:
            scheduler = MegatronLMSchedulerWrapper(scheduler, optimizer)

        for i in range(len(result)):
            if isinstance(result[i], torch.nn.Module):
                result[i] = model
            elif isinstance(result[i], torch.optim.Optimizer):
                result[i] = optimizer
            elif isinstance(result[i], MegatronLMDummyScheduler):
                result[i] = scheduler
        if model is not None:
            self._models.append(model)
        if optimizer is not None:
            self._optimizers.append(optimizer)
        if scheduler is not None:
            self._schedulers.append(scheduler)
        if len(self._models) > 1:
            raise AssertionError(
                "You can't use same `Accelerator()` instance with multiple models when using Megatron-LM"
            )
        return tuple(result)

    def _prepare_ipex(self, *args):
        if not is_ipex_available():
            raise ImportError(
                "IPEX is not installed or IPEX's version does not match current PyTorch version. Please refer"
                " to https://github.com/intel/intel-extension-for-pytorch."
            )
        else:
            import intel_extension_for_pytorch as ipex

        model = None
        optimizer = None
        result = [obj for obj in args]
        for obj in result:
            if isinstance(obj, torch.nn.Module):
                model = obj
            elif isinstance(obj, (torch.optim.Optimizer)):
                optimizer = obj
        if optimizer is not None and model is not None:
            dtype = torch.bfloat16 if self.state.mixed_precision == "bf16" else torch.float32
            if self.device.type == "xpu" and is_xpu_available():
                model = model.to(self.device)
                model, optimizer = torch.xpu.optimize(
                    model, optimizer=optimizer, dtype=dtype, inplace=True, level="O1"
                )
            else:
                model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=dtype, inplace=True, level="O1")
        for i in range(len(result)):
            if isinstance(result[i], torch.nn.Module):
                result[i] = model
            elif isinstance(result[i], (torch.optim.Optimizer)):
                result[i] = optimizer
        return tuple(result)

    def prepare_data_loader(self, data_loader: torch.utils.data.DataLoader, device_placement=None):
        """
        Prepares a PyTorch DataLoader for training in any distributed setup. It is recommended to use
        [`Accelerator.prepare`] instead.

        Args:
            data_loader (`torch.utils.data.DataLoader`):
                A vanilla PyTorch DataLoader to prepare
            device_placement (`bool`, *optional*):
                Whether or not to place the batches on the proper device in the prepared dataloader. Will default to
                `self.device_placement`.

        Example:

        ```python
        >>> import torch
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> data_loader = torch.utils.data.DataLoader(...)
        >>> data_loader = accelerator.prepare_data_loader(data_loader, device_placement=True)
        ```
        """
        # Ensure we can't double wrap a DataLoader due to `find_batch_size`
        if getattr(data_loader, "_is_accelerate_prepared", False):
            if data_loader not in self._dataloaders:
                self._dataloaders.append(data_loader)
            return data_loader
        if device_placement is None:
            device_placement = self.device_placement if self.distributed_type != DistributedType.TPU else False
        prepared_data_loader = prepare_data_loader(
            data_loader,
            self.device,
            num_processes=self.num_processes,
            process_index=self.process_index,
            split_batches=self.split_batches,
            put_on_device=device_placement,
            rng_types=self.rng_types.copy(),
            dispatch_batches=self.dispatch_batches,
            even_batches=self.even_batches,
        )
        self._dataloaders.append(prepared_data_loader)
        return prepared_data_loader

    def prepare_optimizer(self, optimizer: torch.optim.Optimizer, device_placement=None):
        """
        Prepares a PyTorch Optimizer for training in any distributed setup. It is recommended to use
        [`Accelerator.prepare`] instead.

        Args:
            optimizer (`torch.optim.Optimizer`):
                A vanilla PyTorch optimizer to prepare
            device_placement (`bool`, *optional*):
                Whether or not to place the optimizer on the proper device. Will default to `self.device_placement`.

        Example:

        ```python
        >>> import torch
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> optimizer = torch.optim.Adam(...)
        >>> optimizer = accelerator.prepare_optimizer(optimizer, device_placement=True)
        ```
        """
        # Ensure we can't double wrap an optimizer due to `find_batch_size`
        if getattr(optimizer, "_is_accelerate_prepared", False):
            if optimizer not in self._optimizers:
                self._optimizers.append(optimizer)
            return optimizer
        if device_placement is None:
            device_placement = self.device_placement
        optimizer = AcceleratedOptimizer(optimizer, device_placement=device_placement, scaler=self.scaler)
        self._optimizers.append(optimizer)
        return optimizer

    def prepare_scheduler(self, scheduler: LRScheduler):
        """
        Prepares a PyTorch Scheduler for training in any distributed setup. It is recommended to use
        [`Accelerator.prepare`] instead.

        Args:
            scheduler (`torch.optim.lr_scheduler.LRScheduler`):
                A vanilla PyTorch scheduler to prepare

        Example:

        ```python
        >>> import torch
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> optimizer = torch.optim.Adam(...)
        >>> scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, ...)
        >>> scheduler = accelerator.prepare_scheduler(scheduler)
        ```
        """
        # Ensure we can't double wrap a scheduler due to `find_batch_size`
        if getattr(scheduler, "_is_accelerate_prepared", False):
            if scheduler not in self._schedulers:
                self._schedulers.append(scheduler)
            return scheduler
        # We try to find the optimizer associated with `scheduler`, the default is the full list.
        optimizer = self._optimizers
        for opt in self._optimizers:
            if getattr(scheduler, "optimizer", None) == opt.optimizer:
                optimizer = opt
                break
        scheduler = AcceleratedScheduler(
            scheduler,
            optimizer,
            step_with_optimizer=self.step_scheduler_with_optimizer,
            split_batches=self.split_batches,
        )
        self._schedulers.append(scheduler)
        return scheduler

    def backward(self, loss, **kwargs):
        """
        Scales the gradients in accordance to the `GradientAccumulationPlugin` and calls the correct `backward()` based
        on the configuration.

        Should be used in lieu of `loss.backward()`.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(gradient_accumulation_steps=2)
        >>> outputs = model(inputs)
        >>> loss = loss_fn(outputs, labels)
        >>> accelerator.backward(loss)
        ```
        """
        if self.distributed_type != DistributedType.DEEPSPEED:
            # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward`
            loss = loss / self.gradient_accumulation_steps
        if self.distributed_type == DistributedType.DEEPSPEED:
            self.deepspeed_engine_wrapped.backward(loss, **kwargs)
        elif self.distributed_type == DistributedType.MEGATRON_LM:
            return
        elif self.scaler is not None:
            self.scaler.scale(loss).backward(**kwargs)
        else:
            loss.backward(**kwargs)

    def unscale_gradients(self, optimizer=None):
        """
        Unscale the gradients in mixed precision training with AMP. This is a noop in all other settings.

        Likely should be called through [`Accelerator.clip_grad_norm_`] or [`Accelerator.clip_grad_value_`]

        Args:
            optimizer (`torch.optim.Optimizer` or `list[torch.optim.Optimizer]`, *optional*):
                The optimizer(s) for which to unscale gradients. If not set, will unscale gradients on all optimizers
                that were passed to [`~Accelerator.prepare`].

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> model, optimizer = accelerator.prepare(model, optimizer)
        >>> outputs = model(inputs)
        >>> loss = loss_fn(outputs, labels)
        >>> accelerator.backward(loss)
        >>> accelerator.unscale_gradients(optimizer=optimizer)
        ```
        """
        if self.native_amp and self.mixed_precision == "fp16":
            if optimizer is None:
                # TODO: this unscales all optimizers where we should only unscale the one where parameters are.
                optimizer = self._optimizers
            elif not isinstance(optimizer, (tuple, list)):
                optimizer = [optimizer]
            for opt in optimizer:
                while isinstance(opt, AcceleratedOptimizer):
                    opt = opt.optimizer
                self.scaler.unscale_(opt)

    def clip_grad_norm_(self, parameters, max_norm, norm_type=2):
        """
        Should be used in place of `torch.nn.utils.clip_grad_norm_`.

        Returns:
            `torch.Tensor`: Total norm of the parameter gradients (viewed as a single vector).

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(gradient_accumulation_steps=2)
        >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler)

        >>> for input, target in dataloader:
        ...     optimizer.zero_grad()
        ...     output = model(input)
        ...     loss = loss_func(output, target)
        ...     accelerator.backward(loss)
        ...     if accelerator.sync_gradients:
        ...         accelerator.clip_grad_norm_(model.parameters(), max_grad_norm)
        ...     optimizer.step()
        ```
        """
        if self.distributed_type == DistributedType.FSDP:
            self.unscale_gradients()
            parameters = [p for p in parameters]
            for model in self._models:
                if parameters == [p for p in model.parameters()]:
                    return model.clip_grad_norm_(max_norm, norm_type)
        elif self.distributed_type == DistributedType.DEEPSPEED:
            # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
            # We cannot return the gradient norm because DeepSpeed does it.
            return None
        self.unscale_gradients()
        return torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=norm_type)

    def clip_grad_value_(self, parameters, clip_value):
        """
        Should be used in place of `torch.nn.utils.clip_grad_value_`.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(gradient_accumulation_steps=2)
        >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler)

        >>> for input, target in dataloader:
        ...     optimizer.zero_grad()
        ...     output = model(input)
        ...     loss = loss_func(output, target)
        ...     accelerator.backward(loss)
        ...     if accelerator.sync_gradients:
        ...         accelerator.clip_grad_value_(model.parameters(), clip_value)
        ...     optimizer.step()
        ```
        """
        if self.distributed_type in [DistributedType.DEEPSPEED, DistributedType.FSDP]:
            raise Exception("DeepSpeed and FSDP  do not support `clip_grad_value_`. Use `clip_grad_norm_` instead.")
        self.unscale_gradients()
        torch.nn.utils.clip_grad_value_(parameters, clip_value)

    def gather(self, tensor):
        """
        Gather the values in *tensor* across all processes and concatenate them on the first dimension. Useful to
        regroup the predictions from all processes when doing evaluation.

        Note:
            This gather happens in all processes.

        Args:
            tensor (`torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`):
                The tensors to gather across all processes.

        Returns:
            `torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`: The gathered tensor(s). Note that the
            first dimension of the result is *num_processes* multiplied by the first dimension of the input tensors.

        Example:

        ```python
        >>> # Assuming four processes
        >>> import torch
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> process_tensor = torch.tensor([accelerator.process_index])
        >>> gathered_tensor = accelerator.gather(process_tensor)
        >>> gathered_tensor
        tensor([0, 1, 2, 3])
        ```
        """
        return gather(tensor)

    def gather_for_metrics(self, tensor):
        """
        Gathers `tensor` and potentially drops duplicates in the last batch if on a distributed system. Should be used
        for gathering the inputs and targets for metric calculation.

        Args:
            tensor (`torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`):
                The tensors for calculating metrics across all processes.

        Example:

        ```python
        >>> # Assuming two processes, with a batch size of 5 on a dataset with 9 samples
        >>> import torch
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> dataloader = torch.utils.data.DataLoader(range(9), batch_size=5)
        >>> dataloader = accelerator.prepare(dataloader)
        >>> batch = next(iter(dataloader))
        >>> gathered_items = accelerator.gather_for_metrics(batch)
        >>> len(gathered_items)
        9
        ```
        """
        tensor = self.gather(tensor)
        if self.gradient_state.remainder == -1:
            logger.info(
                "The used dataset had no length, returning gathered tensors. You should drop the remainder yourself."
            )
            return tensor
        try:
            # Then see if we're on the last batch of our eval dataloader
            if self.gradient_state.end_of_dataloader and self.gradient_state.remainder > 0:
                # Last batch needs to be truncated on distributed systems as it contains additional samples
                def _adjust_samples(tensor):
                    return tensor[: self.gradient_state.remainder]

                return recursively_apply(_adjust_samples, tensor)
            else:
                # Not at the end of the dataloader, no need to adjust the tensors
                return tensor
        except Exception:
            # Dataset had no length or raised an error
            return tensor

    def reduce(self, tensor, reduction="sum"):
        """
        Reduce the values in *tensor* across all processes based on *reduction*.

        Note:
            All processes get the reduced value.

        Args:
            tensor (`torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`):
                The tensors to reduce across all processes.
            reduction (`str`, *optional*, defaults to "sum"):
                A reduction type, can be one of 'sum', 'mean', or 'none'. If 'none', will not perform any operation.

        Returns:
            `torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`:
                The reduced tensor(s).

        Example:

        ```python
        >>> # Assuming two processes
        >>> import torch
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> process_tensor = torch.arange(accelerator.num_processes) + 1 + (2 * accelerator.process_index)
        >>> process_tensor = process_tensor.to(accelerator.device)
        >>> reduced_tensor = accelerator.reduce(process_tensor, reduction="sum")
        >>> reduced_tensor
        tensor([4, 6])
        ```
        """
        return reduce(tensor, reduction)

    def pad_across_processes(self, tensor, dim=0, pad_index=0, pad_first=False):
        """
        Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so
        they can safely be gathered.

        Args:
            tensor (nested list/tuple/dictionary of `torch.Tensor`):
                The data to gather.
            dim (`int`, *optional*, defaults to 0):
                The dimension on which to pad.
            pad_index (`int`, *optional*, defaults to 0):
                The value with which to pad.
            pad_first (`bool`, *optional*, defaults to `False`):
                Whether to pad at the beginning or the end.

        Returns:
            `torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`:
                The padded tensor(s).

        Example:

        ```python
        >>> # Assuming two processes, with the first processes having a tensor of size 1 and the second of size 2
        >>> import torch
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> process_tensor = torch.arange(accelerator.process_index + 1).to(accelerator.device)
        >>> padded_tensor = accelerator.pad_across_processes(process_tensor)
        >>> padded_tensor.shape
        torch.Size([2])
        ```
        """
        return pad_across_processes(tensor, dim=dim, pad_index=pad_index, pad_first=pad_first)

    def unwrap_model(self, model, keep_fp32_wrapper: bool = True):
        """
        Unwraps the `model` from the additional layer possible added by [`~Accelerator.prepare`]. Useful before saving
        the model.

        Args:
            model (`torch.nn.Module`):
                The model to unwrap.
            keep_fp32_wrapper (`bool`, *optional*, defaults to `True`):
                Whether to not remove the mixed precision hook if it was added.

        Returns:
            `torch.nn.Module`: The unwrapped model.

        Example:

        ```python
        >>> # Assuming two GPU processes
        >>> from torch.nn.parallel import DistributedDataParallel
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> model = accelerator.prepare(MyModel())
        >>> print(model.__class__.__name__)
        DistributedDataParallel

        >>> model = accelerator.unwrap_model(model)
        >>> print(model.__class__.__name__)
        MyModel
        ```
        """
        return extract_model_from_parallel(model, keep_fp32_wrapper)

    def wait_for_everyone(self):
        """
        Will stop the execution of the current process until every other process has reached that point (so this does
        nothing when the script is only run in one process). Useful to do before saving a model.

        Example:

        ```python
        >>> # Assuming two GPU processes
        >>> import time
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> if accelerator.is_main_process:
        ...     time.sleep(2)
        >>> else:
        ...     print("I'm waiting for the main process to finish its sleep...")
        >>> accelerator.wait_for_everyone()
        >>> # Should print on every process at the same time
        >>> print("Everyone is here")
        ```
        """
        wait_for_everyone()

    @on_main_process
    def init_trackers(self, project_name: str, config: dict | None = None, init_kwargs: dict | None = {}):
        """
        Initializes a run for all trackers stored in `self.log_with`, potentially with starting configurations

        Args:
            project_name (`str`):
                The name of the project. All trackers will save their data based on this
            config (`dict`, *optional*):
                Optional starting configuration to be logged.
            init_kwargs (`dict`, *optional*):
                A nested dictionary of kwargs to be passed to a specific tracker's `__init__` function. Should be
                formatted like so:
                ```python
                {"wandb": {"tags": ["tag_a", "tag_b"]}}
                ```

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(log_with="tensorboard")
        >>> accelerator.init_trackers(
        ...     project_name="my_project",
        ...     config={"learning_rate": 0.001, "batch_size": 32},
        ...     init_kwargs={"tensorboard": {"flush_secs": 60}},
        ... )
        ```
        """
        self.trackers = []
        for tracker in self.log_with:
            if issubclass(type(tracker), GeneralTracker):
                # Custom trackers are already initialized
                self.trackers.append(tracker)
            else:
                tracker_init = LOGGER_TYPE_TO_CLASS[str(tracker)]
                if getattr(tracker_init, "requires_logging_directory"):
                    # We can skip this check since it was done in `__init__`
                    self.trackers.append(
                        tracker_init(project_name, self.logging_dir, **init_kwargs.get(str(tracker), {}))
                    )
                else:
                    self.trackers.append(tracker_init(project_name, **init_kwargs.get(str(tracker), {})))
        if config is not None:
            for tracker in self.trackers:
                tracker.store_init_configuration(config)

    def get_tracker(self, name: str, unwrap: bool = False):
        """
        Returns a `tracker` from `self.trackers` based on `name` on the main process only.

        Args:
            name (`str`):
                The name of a tracker, corresponding to the `.name` property.
            unwrap (`bool`):
                Whether to return the internal tracking mechanism or to return the wrapped tracker instead
                (recommended).

        Returns:
            `GeneralTracker`: The tracker corresponding to `name` if it exists.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(log_with="tensorboard")
        >>> accelerator.init_trackers("my_project")
        >>> tensorboard_tracker = accelerator.get_tracker("tensorboard")
        ```
        """
        if len(getattr(self, "trackers", [])) > 0:
            for tracker in self.trackers:
                if tracker.name == name:
                    return tracker.tracker if unwrap else tracker
            raise ValueError(f"{name} is not an available tracker stored inside the `Accelerator`.")
        # Handle tracker only made on main process
        return GeneralTracker(_blank=True)

    @on_main_process
    def log(self, values: dict, step: int | None = None, log_kwargs: dict | None = {}):
        """
        Logs `values` to all stored trackers in `self.trackers` on the main process only.

        Args:
            values (`dict`):
                Values should be a dictionary-like object containing only types `int`, `float`, or `str`.
            step (`int`, *optional*):
                The run step. If included, the log will be affiliated with this step.
            log_kwargs (`dict`, *optional*):
                A nested dictionary of kwargs to be passed to a specific tracker's `log` function. Should be formatted
                like so:
                ```python
                {"wandb": {"tags": ["tag_a", "tag_b"]}}
                ```

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(log_with="tensorboard")
        >>> accelerator.init_trackers("my_project")
        >>> accelerator.log({"loss": 0.5, "accuracy": 0.9})
        ```
        """
        for tracker in self.trackers:
            tracker.log(values, step=step, **log_kwargs.get(tracker.name, {}))

    @on_main_process
    def end_training(self):
        """
        Runs any special end training behaviors, such as stopping trackers on the main process only. Should always be
        called at the end of your script if using experiment tracking.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(log_with="tensorboard")
        >>> accelerator.init_trackers("my_project")
        >>> # Do training
        >>> accelerator.end_training()
        ```
        """
        for tracker in self.trackers:
            tracker.finish()

    def save(self, obj, f):
        """
        Save the object passed to disk once per machine. Use in place of `torch.save`.

        Args:
            obj (`object`): The object to save.
            f (`str` or `os.PathLike`): Where to save the content of `obj`.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> arr = [0, 1, 2, 3]
        >>> accelerator.save(arr, "array.pkl")
        ```
        """
        save(obj, f)

    def save_model(
        self,
        model: torch.nn.Module,
        save_directory: Union[str, os.PathLike],
        max_shard_size: Union[int, str] = "10GB",
        safe_serialization: bool = False,
    ):
        """
        Save a model so that it can be re-loaded using load_checkpoint_in_model

        Arguments:
            model: (`torch.nn.Module`):
                Model to be saved. The model can be wrapped or unwraped.
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

            safe_serialization (`bool`, *optional*, defaults to `False`):
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> model = ...
        >>> accelerator.save_model(model, save_directory)
        ```
        """

        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")

        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

        # get the state_dict of the model
        state_dict = self.get_state_dict(model)

        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            # when bnb serialization is used the weights in the state dict can be strings
            for name, tensor in state_dict.items():
                if not isinstance(tensor, str):
                    ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
            warn_names = set()
            for names in shared_ptrs.values():
                # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
                # If the link between tensors was done at runtime then `from_pretrained` will not get
                # the key back leading to random tensor. A proper warning will be shown
                # during reload (if applicable), but since the file is not necessarily compatible with
                # the config, better show a proper warning.
                found = 0
                for name in names:
                    if name in state_dict:
                        found += 1
                        if found > 1:
                            del state_dict[name]
                            warn_names.add(name)
            if len(warn_names) > 0:
                logger.warning_once(
                    f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
                )

        weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME

        # Shard the model if it is too big.
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
            weights_no_suffix = weights_name.replace(".bin", "")

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "")
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")

            if (
                filename.startswith(weights_no_suffix)
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and reg.fullmatch(filename_no_suffix) is not None
                and PartialState().is_main_process
            ):
                os.remove(full_filename)

        # Save the model
        for shard_file, shard in shards.items():
            self.save(shard, os.path.join(save_directory, shard_file))

        if index is None:
            path_to_weights = os.path.join(save_directory, WEIGHTS_NAME)
            logger.info(f"Model weights saved in {path_to_weights}")
        else:
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
            save_index_file = os.path.join(save_directory, save_index_file)
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )

    def register_save_state_pre_hook(self, hook: Callable[..., None]) -> hooks.RemovableHandle:
        """
        Registers a pre hook to be run before `save_checkpoint` is called in [`Accelerator.save_state`].

        Args:
            hook (`Callable`):
                A function to be called in [`Accelerator.save_state`] before `save_checkpoint`.

        The hook should have the following signature:

        `hook(models: list[torch.nn.Module], weights: list[dict[str, torch.Tensor]], input_dir: str) -> None`

        The `models` argument are the models as saved in the accelerator state under `accelerator._models`, `weigths`
        argument are the state dicts of the `models`, and the `input_dir` argument is the `input_dir` argument passed
        to [`Accelerator.load_state`].

        <Tip>

        Should only be used in conjunction with [`Accelerator.register_load_state_pre_hook`]. Can be useful to save
        configurations in addition to model weights. Can also be used to overwrite model saving with a customized
        method. In this case, make sure to remove already loaded weights from the weights list.

        </Tip>

        Returns:
            `torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling
            `handle.remove()`
        """
        handle = hooks.RemovableHandle(self._save_model_state_pre_hook)
        self._save_model_state_pre_hook[handle.id] = hook
        return handle

    def save_state(self, output_dir: str = None, **save_model_func_kwargs):
        """
        Saves the current states of the model, optimizer, scaler, RNG generators, and registered objects to a folder.

        If a `ProjectConfiguration` was passed to the `Accelerator` object with `automatic_checkpoint_naming` enabled
        then checkpoints will be saved to `self.project_dir/checkpoints`. If the number of current saves is greater
        than `total_limit` then the oldest save is deleted. Each checkpoint is saved in seperate folders named
        `checkpoint_<iteration>`.

        Otherwise they are just saved to `output_dir`.

        <Tip>

        Should only be used when wanting to save a checkpoint during training and restoring the state in the same
        environment.

        </Tip>

        Args:
            output_dir (`str` or `os.PathLike`):
                The name of the folder to save all relevant weights and states.
            save_model_func_kwargs (`dict`, *optional*):
                Additional keyword arguments for saving model which can be passed to the underlying save function, such
                as optional arguments for DeepSpeed's `save_checkpoint` function.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> model, optimizer, lr_scheduler = ...
        >>> model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
        >>> accelerator.save_state(output_dir="my_checkpoint")
        ```
        """
        if self.project_configuration.automatic_checkpoint_naming:
            output_dir = os.path.join(self.project_dir, "checkpoints")
        os.makedirs(output_dir, exist_ok=True)
        if self.project_configuration.automatic_checkpoint_naming:
            folders = [os.path.join(output_dir, folder) for folder in os.listdir(output_dir)]
            if self.project_configuration.total_limit is not None and (
                len(folders) + 1 > self.project_configuration.total_limit
            ):

                def _inner(folder):
                    return list(map(int, re.findall(r"[\/]?([0-9]+)(?=[^\/]*$)", folder)))[0]

                folders.sort(key=_inner)
                logger.warning(
                    f"Deleting {len(folders) + 1 - self.project_configuration.total_limit} checkpoints to make room for new checkpoint."
                )
                for folder in folders[: len(folders) + 1 - self.project_configuration.total_limit]:
                    shutil.rmtree(folder)
            output_dir = os.path.join(output_dir, f"checkpoint_{self.save_iteration}")
            if os.path.exists(output_dir):
                raise ValueError(
                    f"Checkpoint directory {output_dir} ({self.save_iteration}) already exists. Please manually override `self.save_iteration` with what iteration to start with."
                )
        os.makedirs(output_dir, exist_ok=True)
        logger.info(f"Saving current state to {output_dir}")

        if self.distributed_type == DistributedType.TPU:
            # Finish running the previous step before checkpointing
            xm.mark_step()

        # Save the models taking care of FSDP and DeepSpeed nuances
        weights = []
        for i, model in enumerate(self._models):
            if self.distributed_type == DistributedType.FSDP:
                logger.info("Saving FSDP model")
                save_fsdp_model(self.state.fsdp_plugin, self, model, output_dir, i)
                logger.info(f"FSDP Model saved to output dir {output_dir}")
            elif self.distributed_type == DistributedType.DEEPSPEED:
                logger.info("Saving DeepSpeed Model and Optimizer")
                ckpt_id = f"{MODEL_NAME}" if i == 0 else f"{MODEL_NAME}_{i}"
                model.save_checkpoint(output_dir, ckpt_id, **save_model_func_kwargs)
                logger.info(f"DeepSpeed Model and Optimizer saved to output dir {os.path.join(output_dir, ckpt_id)}")
            elif self.distributed_type == DistributedType.MEGATRON_LM:
                logger.info("Saving Megatron-LM Model, Optimizer and Scheduler")
                model.save_checkpoint(output_dir)
                logger.info(f"Megatron-LM Model , Optimizer and Scheduler saved to output dir {output_dir}")
            else:
                weights.append(self.get_state_dict(model, unwrap=False))

        # Save the optimizers taking care of FSDP and DeepSpeed nuances
        optimizers = []
        if self.distributed_type == DistributedType.FSDP:
            for opt in self._optimizers:
                logger.info("Saving FSDP Optimizer")
                save_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], output_dir, i)
                logger.info(f"FSDP Optimizer saved to output dir {output_dir}")
        elif self.distributed_type not in [DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]:
            optimizers = self._optimizers

        # Save the lr schedulers taking care of DeepSpeed nuances
        schedulers = []
        if self.distributed_type == DistributedType.DEEPSPEED:
            for i, scheduler in enumerate(self._schedulers):
                if isinstance(scheduler, DeepSpeedSchedulerWrapper):
                    continue
                schedulers.append(scheduler)
        elif self.distributed_type not in [DistributedType.MEGATRON_LM]:
            schedulers = self._schedulers

        # Call model loading hooks that might have been registered with
        # accelerator.register_model_state_hook
        for hook in self._save_model_state_pre_hook.values():
            hook(self._models, weights, output_dir)

        save_location = save_accelerator_state(
            output_dir, weights, optimizers, schedulers, self.state.process_index, self.scaler
        )
        for i, obj in enumerate(self._custom_objects):
            save_custom_state(obj, output_dir, i)
        self.project_configuration.iteration += 1
        return save_location

    def register_load_state_pre_hook(self, hook: Callable[..., None]) -> hooks.RemovableHandle:
        """
        Registers a pre hook to be run before [`load_checkpoint`] is called in [`Accelerator.load_state`].

        Args:
            hook (`Callable`):
                A function to be called in [`Accelerator.load_state`] before `load_checkpoint`.

        The hook should have the following signature:

        `hook(models: list[torch.nn.Module], input_dir: str) -> None`

        The `models` argument are the models as saved in the accelerator state under `accelerator._models`, and the
        `input_dir` argument is the `input_dir` argument passed to [`Accelerator.load_state`].

        <Tip>

        Should only be used in conjunction with [`Accelerator.register_save_state_pre_hook`]. Can be useful to load
        configurations in addition to model weights. Can also be used to overwrite model loading with a customized
        method. In this case, make sure to remove already loaded models from the models list.

        </Tip>

        Returns:
            `torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling
            `handle.remove()`
        """
        handle = hooks.RemovableHandle(self._load_model_state_pre_hook)
        self._load_model_state_pre_hook[handle.id] = hook
        return handle

    def load_state(self, input_dir: str, **load_model_func_kwargs):
        """
        Loads the current states of the model, optimizer, scaler, RNG generators, and registered objects.

        <Tip>

        Should only be used in conjunction with [`Accelerator.save_state`]. If a file is not registered for
        checkpointing, it will not be loaded if stored in the directory.

        </Tip>

        Args:
            input_dir (`str` or `os.PathLike`):
                The name of the folder all relevant weights and states were saved in.
            load_model_func_kwargs (`dict`, *optional*):
                Additional keyword arguments for loading model which can be passed to the underlying load function,
                such as optional arguments for DeepSpeed's `load_checkpoint` function or a `map_location` to load the
                model and optimizer on.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> model, optimizer, lr_scheduler = ...
        >>> model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
        >>> accelerator.load_state("my_checkpoint")
        ```
        """
        # Check if folder exists
        input_dir = os.path.expanduser(input_dir)
        if not os.path.isdir(input_dir):
            raise ValueError(f"Tried to find {input_dir} but folder does not exist")
        logger.info(f"Loading states from {input_dir}")

        # Load the models taking care of FSDP and DeepSpeed nuances
        models = []
        for i, model in enumerate(self._models):
            if self.distributed_type == DistributedType.FSDP:
                logger.info("Loading FSDP model")
                load_fsdp_model(self.state.fsdp_plugin, self, model, input_dir, i)
                logger.info(f"FSDP Model loaded from input dir {input_dir}")
            elif self.distributed_type == DistributedType.DEEPSPEED:
                logger.info("Loading DeepSpeed Model and Optimizer")
                ckpt_id = f"{MODEL_NAME}" if i == 0 else f"{MODEL_NAME}_{i}"
                model.load_checkpoint(input_dir, ckpt_id, **load_model_func_kwargs)
                logger.info(f"DeepSpeed Model and Optimizer loaded from input dir {os.path.join(input_dir, ckpt_id)}")
            elif self.distributed_type == DistributedType.MEGATRON_LM:
                logger.info("Loading Megatron-LM Model, Optimizer and Scheduler")
                model.load_checkpoint(input_dir)
                logger.info(f"Megatron-LM Model , Optimizer and Scheduler loaded from input dir {input_dir}")
            else:
                models.append(model)

        # Load the optimizers taking care of FSDP and DeepSpeed nuances
        optimizers = []
        if self.distributed_type == DistributedType.FSDP:
            for i, opt in enumerate(self._optimizers):
                logger.info("Loading FSDP Optimizer")
                load_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], input_dir, i)
                logger.info(f"FSDP Optimizer loaded from input dir {input_dir}")
        elif self.distributed_type not in [DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]:
            optimizers = self._optimizers

        # Load the lr schedulers taking care of DeepSpeed nuances
        schedulers = []
        if self.distributed_type == DistributedType.DEEPSPEED:
            for i, scheduler in enumerate(self._schedulers):
                if isinstance(scheduler, DeepSpeedSchedulerWrapper):
                    continue
                schedulers.append(scheduler)
        elif self.distributed_type not in [DistributedType.MEGATRON_LM]:
            schedulers = self._schedulers

        # Call model loading hooks that might have been registered with
        # accelerator.register_model_state_hook
        for hook in self._load_model_state_pre_hook.values():
            hook(models, input_dir)

        map_location = load_model_func_kwargs.pop("map_location", None)
        if map_location is None:
            if self.num_processes > 1 and self.distributed_type in (
                DistributedType.MULTI_GPU,
                DistributedType.MULTI_NPU,
            ):
                map_location = "on_device"
            else:
                map_location = "cpu"

        load_accelerator_state(
            input_dir,
            models,
            optimizers,
            schedulers,
            self.state.process_index,
            self.scaler,
            map_location,
            **load_model_func_kwargs,
        )
        custom_checkpoints = [
            f for f in os.listdir(input_dir) if re.search(r"^custom_checkpoint_\d+\.pkl$", f) is not None
        ]
        if len(custom_checkpoints) != len(self._custom_objects):
            err = "Number of custom checkpoints in folder {input_dir} does not match the number of registered objects:"
            err += f"\n\tFound checkpoints: {len(custom_checkpoints)}"
            err += f"\n\tRegistered objects: {len(self._custom_objects)}\n"
            err += "Please make sure to only load checkpoints from folders that were created with the same set of registered objects,"
            err += "or avoid using `custom_checkpoint` in the filename for files in that same directory and load them in manually."
            raise RuntimeError(err)
        else:
            logger.info(f"Loading in {len(custom_checkpoints)} custom states")
            for index, obj in enumerate(self._custom_objects):
                load_custom_state(obj, input_dir, index)

    def free_memory(self):
        """
        Will release all references to the internal objects stored and call the garbage collector. You should call this
        method between two trainings with different models/optimizers. Also will reset `Accelerator.step` to 0.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> model, optimizer, scheduler = ...
        >>> model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler)
        >>> accelerator.free_memory()
        >>> del model, optimizer, scheduler
        ```
        """
        self._schedulers = []
        self._optimizers = []
        self._models = []
        self._dataloaders = []
        self.deepspeed_engine_wrapped = None
        self.step = 0
        release_memory()

    def clear(self):
        """
        Alias for [`Accelerate.free_memory`], releases all references to the internal objects stored and call the
        garbage collector. You should call this method between two trainings with different models/optimizers.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> model, optimizer, scheduler = ...
        >>> model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler)
        >>> accelerator.free_memory()
        >>> del model, optimizer, scheduler
        ```
        """
        self.free_memory()

    def _get_named_parameters(self, *args):
        named_parameters = {}
        for obj in args:
            if isinstance(obj, torch.nn.Module):
                obj = extract_model_from_parallel(obj)
                named_parameters.update({n: p for n, p in obj.named_parameters()})
        return named_parameters

    def _get_devices(self, *args):
        model_device = None
        optimizer_device = None
        for obj in args:
            # Loop through model parameters and stop at the first once we have its device.
            if isinstance(obj, torch.nn.Module):
                for param in obj.parameters():
                    model_device = param.device
                    break
            # Loop through optimizer parameters groups and stop at the first once we have its device.
            if isinstance(obj, torch.optim.Optimizer):
                for param_group in obj.param_groups:
                    if len(param_group["params"]) > 0:
                        optimizer_device = param_group["params"][0].device
                        break
        return (model_device, optimizer_device)

    def get_state_dict(self, model, unwrap=True):
        """
        Returns the state dictionary of a model sent through [`Accelerator.prepare`] potentially without full
        precision.

        Args:
            model (`torch.nn.Module`):
                A PyTorch model sent through [`Accelerator.prepare`]
            unwrap (`bool`, *optional*, defaults to `True`):
                Whether to return the original underlying state_dict of `model` or to return the wrapped state_dict

        Returns:
            `dict`: The state dictionary of the model potentially without full precision.

        Example:

        ```python
        >>> import torch
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> net = torch.nn.Linear(2, 2)
        >>> net = accelerator.prepare(net)
        >>> state_dict = accelerator.get_state_dict(net)
        ```
        """

        if self.distributed_type == DistributedType.DEEPSPEED:
            if self.deepspeed_config["zero_optimization"]["stage"] == 3:
                if model.zero_gather_16bit_weights_on_model_save():
                    state_dict = model._zero3_consolidated_16bit_state_dict()
                else:
                    raise ValueError(
                        "Cannot get 16bit model weights because `stage3_gather_16bit_weights_on_model_save` in DeepSpeed config is False. "
                        "To save the model weights in 16bit, set `stage3_gather_16bit_weights_on_model_save` to True in DeepSpeed config file or "
                        "set `zero3_save_16bit_model` to True when using `accelerate config`. "
                        "To save the full checkpoint, run `model.save_checkpoint(save_dir)` and use `zero_to_fp32.py` to recover weights."
                    )
            else:
                from deepspeed.checkpoint.utils import clone_tensors_for_torch_save

                state_dict = clone_tensors_for_torch_save(self.unwrap_model(model).state_dict())
        else:
            if unwrap:
                model = self.unwrap_model(model)
            state_dict = model.state_dict()

        if state_dict is not None:
            for k in state_dict:
                if getattr(state_dict[k], "dtype", None) == torch.float16:
                    state_dict[k] = state_dict[k].float()

        return state_dict

    def register_for_checkpointing(self, *objects):
        """
        Makes note of `objects` and will save or load them in during `save_state` or `load_state`.

        These should be utilized when the state is being loaded or saved in the same script. It is not designed to be
        used in different scripts.

        <Tip>

        Every `object` must have a `load_state_dict` and `state_dict` function to be stored.

        </Tip>

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> # Assume `CustomObject` has a `state_dict` and `load_state_dict` function.
        >>> obj = CustomObject()
        >>> accelerator.register_for_checkpointing(obj)
        >>> accelerator.save_state("checkpoint.pt")
        ```
        """
        invalid_objects = []
        for obj in objects:
            if not hasattr(obj, "state_dict") or not hasattr(obj, "load_state_dict"):
                invalid_objects.append(obj)
        if len(invalid_objects) > 0:
            err = "All `objects` must include a `state_dict` and `load_state_dict` function to be stored. The following inputs are invalid:"
            for index, obj in enumerate(invalid_objects):
                err += f"\n\t- Item at index {index}, `{get_pretty_name(obj)}`"
            raise ValueError(err)
        self._custom_objects.extend(objects)

    @contextmanager
    def autocast(self, cache_enabled: bool = False):
        """
        Will apply automatic mixed-precision inside the block inside this context manager, if it is enabled. Nothing
        different will happen otherwise.

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator(mixed_precision="fp16")
        >>> with accelerator.autocast():
        ...     train()
        ```
        """
        autocast_context = get_mixed_precision_context_manager(self.native_amp, cache_enabled=cache_enabled)
        autocast_context.__enter__()
        yield
        autocast_context.__exit__(*sys.exc_info())

    @property
    def optimizer_step_was_skipped(self):
        """
        Whether or not the optimizer update was skipped (because of gradient overflow in mixed precision), in which
        case the learning rate should not be changed.
        """
        for optimizer in self._optimizers:
            if optimizer.step_was_skipped:
                return True
        return False

    def skip_first_batches(self, dataloader, num_batches: int = 0):
        """
        Creates a new `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`.

        Args:
            dataloader (`torch.utils.data.DataLoader`): The data loader in which to skip batches.
            num_batches (`int`, *optional*, defaults to 0): The number of batches to skip

        Example:

        ```python
        >>> from accelerate import Accelerator

        >>> accelerator = Accelerator()
        >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler)
        >>> skipped_dataloader = accelerator.skip_first_batches(dataloader, num_batches=2)
        >>> # for the first epoch only
        >>> for input, target in skipped_dataloader:
        ...     optimizer.zero_grad()
        ...     output = model(input)
        ...     loss = loss_func(output, target)
        ...     accelerator.backward(loss)
        ...     optimizer.step()

        >>> # subsequent epochs
        >>> for input, target in dataloader:
        ...     optimizer.zero_grad()
        ...     ...
        ```
        """
        return skip_first_batches(dataloader, num_batches=num_batches)

    def __deepcopy__(self, memo):
        logger.info("Deep copying the `Accelerator` object, note that this will point to the same original object.")
        return self