|
import inspect |
|
import re |
|
import sys |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
import transformers |
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
|
|
import modules.shared as shared |
|
from modules.logging_colors import logger |
|
|
|
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) |
|
|
|
try: |
|
import llama_inference_offload |
|
except ImportError: |
|
logger.error('Failed to load GPTQ-for-LLaMa') |
|
logger.error('See https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md') |
|
sys.exit(-1) |
|
|
|
try: |
|
from modelutils import find_layers |
|
except ImportError: |
|
from utils import find_layers |
|
|
|
try: |
|
from quant import make_quant |
|
is_triton = False |
|
except ImportError: |
|
import quant |
|
is_triton = True |
|
|
|
|
|
|
|
|
|
def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=None, kernel_switch_threshold=128, eval=True): |
|
exclude_layers = exclude_layers or ['lm_head'] |
|
|
|
def noop(*args, **kwargs): |
|
pass |
|
|
|
config = AutoConfig.from_pretrained(model, trust_remote_code=shared.args.trust_remote_code) |
|
torch.nn.init.kaiming_uniform_ = noop |
|
torch.nn.init.uniform_ = noop |
|
torch.nn.init.normal_ = noop |
|
|
|
torch.set_default_dtype(torch.half) |
|
transformers.modeling_utils._init_weights = False |
|
torch.set_default_dtype(torch.half) |
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=shared.args.trust_remote_code) |
|
torch.set_default_dtype(torch.float) |
|
if eval: |
|
model = model.eval() |
|
|
|
layers = find_layers(model) |
|
for name in exclude_layers: |
|
if name in layers: |
|
del layers[name] |
|
|
|
if not is_triton: |
|
gptq_args = inspect.getfullargspec(make_quant).args |
|
|
|
make_quant_kwargs = { |
|
'module': model, |
|
'names': layers, |
|
'bits': wbits, |
|
} |
|
if 'groupsize' in gptq_args: |
|
make_quant_kwargs['groupsize'] = groupsize |
|
if 'faster' in gptq_args: |
|
make_quant_kwargs['faster'] = faster_kernel |
|
if 'kernel_switch_threshold' in gptq_args: |
|
make_quant_kwargs['kernel_switch_threshold'] = kernel_switch_threshold |
|
|
|
make_quant(**make_quant_kwargs) |
|
else: |
|
quant.make_quant_linear(model, layers, wbits, groupsize) |
|
|
|
del layers |
|
if checkpoint.endswith('.safetensors'): |
|
from safetensors.torch import load_file as safe_load |
|
model.load_state_dict(safe_load(checkpoint), strict=False) |
|
else: |
|
model.load_state_dict(torch.load(checkpoint), strict=False) |
|
|
|
if is_triton: |
|
if shared.args.quant_attn: |
|
quant.make_quant_attn(model) |
|
|
|
if eval and shared.args.fused_mlp: |
|
quant.make_fused_mlp(model) |
|
|
|
if shared.args.warmup_autotune: |
|
quant.autotune_warmup_linear(model, transpose=not eval) |
|
if eval and shared.args.fused_mlp: |
|
quant.autotune_warmup_fused(model) |
|
|
|
model.seqlen = 2048 |
|
return model |
|
|
|
|
|
|
|
def find_quantized_model_file(model_name): |
|
if shared.args.checkpoint: |
|
return Path(shared.args.checkpoint) |
|
|
|
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') |
|
pt_path = None |
|
priority_name_list = [ |
|
Path(f'{shared.args.model_dir}/{model_name}{hyphen}{shared.args.wbits}bit{group}{ext}') |
|
for group in ([f'-{shared.args.groupsize}g', ''] if shared.args.groupsize > 0 else ['']) |
|
for ext in ['.safetensors', '.pt'] |
|
for hyphen in ['-', f'/{model_name}-', '/'] |
|
] |
|
|
|
for path in priority_name_list: |
|
if path.exists(): |
|
pt_path = path |
|
break |
|
|
|
|
|
|
|
if not pt_path: |
|
for ext in ['.pt', '.safetensors']: |
|
found = list(path_to_model.glob(f"*{ext}")) |
|
if len(found) > 0: |
|
if len(found) > 1: |
|
logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') |
|
|
|
pt_path = found[-1] |
|
break |
|
|
|
return pt_path |
|
|
|
|
|
|
|
def load_quantized(model_name): |
|
if shared.args.model_type is None: |
|
logger.error("The model could not be loaded because its type could not be inferred from its name.") |
|
logger.error("Please specify the type manually using the --model_type argument.") |
|
return None |
|
|
|
|
|
model_type = shared.args.model_type.lower() |
|
if shared.args.pre_layer and model_type == 'llama': |
|
load_quant = llama_inference_offload.load_quant |
|
elif model_type in ('llama', 'opt', 'gptj'): |
|
if shared.args.pre_layer: |
|
logger.warning("Ignoring --pre_layer because it only works for llama model type.") |
|
|
|
load_quant = _load_quant |
|
else: |
|
logger.error("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") |
|
exit() |
|
|
|
|
|
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') |
|
pt_path = find_quantized_model_file(model_name) |
|
if not pt_path: |
|
logger.error("Could not find the quantized model in .pt or .safetensors format, exiting...") |
|
exit() |
|
else: |
|
logger.info(f"Found the following quantized model: {pt_path}") |
|
|
|
|
|
if model_type == 'llama' and shared.args.pre_layer: |
|
if len(shared.args.pre_layer) == 1: |
|
pre_layer = shared.args.pre_layer[0] |
|
else: |
|
pre_layer = shared.args.pre_layer |
|
|
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, pre_layer) |
|
else: |
|
threshold = False if model_type == 'gptj' else 128 |
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold) |
|
|
|
|
|
if shared.args.gpu_memory or torch.cuda.device_count() > 1: |
|
if shared.args.gpu_memory: |
|
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) |
|
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' |
|
max_memory = {} |
|
for i in range(len(memory_map)): |
|
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] |
|
|
|
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory |
|
else: |
|
max_memory = accelerate.utils.get_balanced_memory(model) |
|
|
|
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) |
|
logger.info("Using the following device map for the quantized model:", device_map) |
|
|
|
model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True) |
|
|
|
|
|
elif not shared.args.cpu: |
|
model = model.to(torch.device('cuda:0')) |
|
|
|
return model |
|
|