|
from functools import lru_cache |
|
from logging import getLogger |
|
from typing import List, Optional |
|
|
|
from .constant import ( |
|
COMMON_SAFE_ASCII_CHARACTERS, |
|
TRACE, |
|
UNICODE_SECONDARY_RANGE_KEYWORD, |
|
) |
|
from .utils import ( |
|
is_accentuated, |
|
is_ascii, |
|
is_case_variable, |
|
is_cjk, |
|
is_emoticon, |
|
is_hangul, |
|
is_hiragana, |
|
is_katakana, |
|
is_latin, |
|
is_punctuation, |
|
is_separator, |
|
is_symbol, |
|
is_thai, |
|
is_unprintable, |
|
remove_accent, |
|
unicode_range, |
|
) |
|
|
|
|
|
class MessDetectorPlugin: |
|
""" |
|
Base abstract class used for mess detection plugins. |
|
All detectors MUST extend and implement given methods. |
|
""" |
|
|
|
def eligible(self, character: str) -> bool: |
|
""" |
|
Determine if given character should be fed in. |
|
""" |
|
raise NotImplementedError |
|
|
|
def feed(self, character: str) -> None: |
|
""" |
|
The main routine to be executed upon character. |
|
Insert the logic in witch the text would be considered chaotic. |
|
""" |
|
raise NotImplementedError |
|
|
|
def reset(self) -> None: |
|
""" |
|
Permit to reset the plugin to the initial state. |
|
""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def ratio(self) -> float: |
|
""" |
|
Compute the chaos ratio based on what your feed() has seen. |
|
Must NOT be lower than 0.; No restriction gt 0. |
|
""" |
|
raise NotImplementedError |
|
|
|
|
|
class TooManySymbolOrPunctuationPlugin(MessDetectorPlugin): |
|
def __init__(self) -> None: |
|
self._punctuation_count: int = 0 |
|
self._symbol_count: int = 0 |
|
self._character_count: int = 0 |
|
|
|
self._last_printable_char: Optional[str] = None |
|
self._frenzy_symbol_in_word: bool = False |
|
|
|
def eligible(self, character: str) -> bool: |
|
return character.isprintable() |
|
|
|
def feed(self, character: str) -> None: |
|
self._character_count += 1 |
|
|
|
if ( |
|
character != self._last_printable_char |
|
and character not in COMMON_SAFE_ASCII_CHARACTERS |
|
): |
|
if is_punctuation(character): |
|
self._punctuation_count += 1 |
|
elif ( |
|
character.isdigit() is False |
|
and is_symbol(character) |
|
and is_emoticon(character) is False |
|
): |
|
self._symbol_count += 2 |
|
|
|
self._last_printable_char = character |
|
|
|
def reset(self) -> None: |
|
self._punctuation_count = 0 |
|
self._character_count = 0 |
|
self._symbol_count = 0 |
|
|
|
@property |
|
def ratio(self) -> float: |
|
if self._character_count == 0: |
|
return 0.0 |
|
|
|
ratio_of_punctuation: float = ( |
|
self._punctuation_count + self._symbol_count |
|
) / self._character_count |
|
|
|
return ratio_of_punctuation if ratio_of_punctuation >= 0.3 else 0.0 |
|
|
|
|
|
class TooManyAccentuatedPlugin(MessDetectorPlugin): |
|
def __init__(self) -> None: |
|
self._character_count: int = 0 |
|
self._accentuated_count: int = 0 |
|
|
|
def eligible(self, character: str) -> bool: |
|
return character.isalpha() |
|
|
|
def feed(self, character: str) -> None: |
|
self._character_count += 1 |
|
|
|
if is_accentuated(character): |
|
self._accentuated_count += 1 |
|
|
|
def reset(self) -> None: |
|
self._character_count = 0 |
|
self._accentuated_count = 0 |
|
|
|
@property |
|
def ratio(self) -> float: |
|
if self._character_count == 0 or self._character_count < 8: |
|
return 0.0 |
|
ratio_of_accentuation: float = self._accentuated_count / self._character_count |
|
return ratio_of_accentuation if ratio_of_accentuation >= 0.35 else 0.0 |
|
|
|
|
|
class UnprintablePlugin(MessDetectorPlugin): |
|
def __init__(self) -> None: |
|
self._unprintable_count: int = 0 |
|
self._character_count: int = 0 |
|
|
|
def eligible(self, character: str) -> bool: |
|
return True |
|
|
|
def feed(self, character: str) -> None: |
|
if is_unprintable(character): |
|
self._unprintable_count += 1 |
|
self._character_count += 1 |
|
|
|
def reset(self) -> None: |
|
self._unprintable_count = 0 |
|
|
|
@property |
|
def ratio(self) -> float: |
|
if self._character_count == 0: |
|
return 0.0 |
|
|
|
return (self._unprintable_count * 8) / self._character_count |
|
|
|
|
|
class SuspiciousDuplicateAccentPlugin(MessDetectorPlugin): |
|
def __init__(self) -> None: |
|
self._successive_count: int = 0 |
|
self._character_count: int = 0 |
|
|
|
self._last_latin_character: Optional[str] = None |
|
|
|
def eligible(self, character: str) -> bool: |
|
return character.isalpha() and is_latin(character) |
|
|
|
def feed(self, character: str) -> None: |
|
self._character_count += 1 |
|
if ( |
|
self._last_latin_character is not None |
|
and is_accentuated(character) |
|
and is_accentuated(self._last_latin_character) |
|
): |
|
if character.isupper() and self._last_latin_character.isupper(): |
|
self._successive_count += 1 |
|
|
|
if remove_accent(character) == remove_accent(self._last_latin_character): |
|
self._successive_count += 1 |
|
self._last_latin_character = character |
|
|
|
def reset(self) -> None: |
|
self._successive_count = 0 |
|
self._character_count = 0 |
|
self._last_latin_character = None |
|
|
|
@property |
|
def ratio(self) -> float: |
|
if self._character_count == 0: |
|
return 0.0 |
|
|
|
return (self._successive_count * 2) / self._character_count |
|
|
|
|
|
class SuspiciousRange(MessDetectorPlugin): |
|
def __init__(self) -> None: |
|
self._suspicious_successive_range_count: int = 0 |
|
self._character_count: int = 0 |
|
self._last_printable_seen: Optional[str] = None |
|
|
|
def eligible(self, character: str) -> bool: |
|
return character.isprintable() |
|
|
|
def feed(self, character: str) -> None: |
|
self._character_count += 1 |
|
|
|
if ( |
|
character.isspace() |
|
or is_punctuation(character) |
|
or character in COMMON_SAFE_ASCII_CHARACTERS |
|
): |
|
self._last_printable_seen = None |
|
return |
|
|
|
if self._last_printable_seen is None: |
|
self._last_printable_seen = character |
|
return |
|
|
|
unicode_range_a: Optional[str] = unicode_range(self._last_printable_seen) |
|
unicode_range_b: Optional[str] = unicode_range(character) |
|
|
|
if is_suspiciously_successive_range(unicode_range_a, unicode_range_b): |
|
self._suspicious_successive_range_count += 1 |
|
|
|
self._last_printable_seen = character |
|
|
|
def reset(self) -> None: |
|
self._character_count = 0 |
|
self._suspicious_successive_range_count = 0 |
|
self._last_printable_seen = None |
|
|
|
@property |
|
def ratio(self) -> float: |
|
if self._character_count == 0: |
|
return 0.0 |
|
|
|
ratio_of_suspicious_range_usage: float = ( |
|
self._suspicious_successive_range_count * 2 |
|
) / self._character_count |
|
|
|
if ratio_of_suspicious_range_usage < 0.1: |
|
return 0.0 |
|
|
|
return ratio_of_suspicious_range_usage |
|
|
|
|
|
class SuperWeirdWordPlugin(MessDetectorPlugin): |
|
def __init__(self) -> None: |
|
self._word_count: int = 0 |
|
self._bad_word_count: int = 0 |
|
self._foreign_long_count: int = 0 |
|
|
|
self._is_current_word_bad: bool = False |
|
self._foreign_long_watch: bool = False |
|
|
|
self._character_count: int = 0 |
|
self._bad_character_count: int = 0 |
|
|
|
self._buffer: str = "" |
|
self._buffer_accent_count: int = 0 |
|
|
|
def eligible(self, character: str) -> bool: |
|
return True |
|
|
|
def feed(self, character: str) -> None: |
|
if character.isalpha(): |
|
self._buffer += character |
|
if is_accentuated(character): |
|
self._buffer_accent_count += 1 |
|
if ( |
|
self._foreign_long_watch is False |
|
and (is_latin(character) is False or is_accentuated(character)) |
|
and is_cjk(character) is False |
|
and is_hangul(character) is False |
|
and is_katakana(character) is False |
|
and is_hiragana(character) is False |
|
and is_thai(character) is False |
|
): |
|
self._foreign_long_watch = True |
|
return |
|
if not self._buffer: |
|
return |
|
if ( |
|
character.isspace() or is_punctuation(character) or is_separator(character) |
|
) and self._buffer: |
|
self._word_count += 1 |
|
buffer_length: int = len(self._buffer) |
|
|
|
self._character_count += buffer_length |
|
|
|
if buffer_length >= 4: |
|
if self._buffer_accent_count / buffer_length > 0.34: |
|
self._is_current_word_bad = True |
|
|
|
|
|
if is_accentuated(self._buffer[-1]) and self._buffer[-1].isupper(): |
|
self._foreign_long_count += 1 |
|
self._is_current_word_bad = True |
|
if buffer_length >= 24 and self._foreign_long_watch: |
|
camel_case_dst = [ |
|
i |
|
for c, i in zip(self._buffer, range(0, buffer_length)) |
|
if c.isupper() |
|
] |
|
probable_camel_cased: bool = False |
|
|
|
if camel_case_dst and (len(camel_case_dst) / buffer_length <= 0.3): |
|
probable_camel_cased = True |
|
|
|
if not probable_camel_cased: |
|
self._foreign_long_count += 1 |
|
self._is_current_word_bad = True |
|
|
|
if self._is_current_word_bad: |
|
self._bad_word_count += 1 |
|
self._bad_character_count += len(self._buffer) |
|
self._is_current_word_bad = False |
|
|
|
self._foreign_long_watch = False |
|
self._buffer = "" |
|
self._buffer_accent_count = 0 |
|
elif ( |
|
character not in {"<", ">", "-", "=", "~", "|", "_"} |
|
and character.isdigit() is False |
|
and is_symbol(character) |
|
): |
|
self._is_current_word_bad = True |
|
self._buffer += character |
|
|
|
def reset(self) -> None: |
|
self._buffer = "" |
|
self._is_current_word_bad = False |
|
self._foreign_long_watch = False |
|
self._bad_word_count = 0 |
|
self._word_count = 0 |
|
self._character_count = 0 |
|
self._bad_character_count = 0 |
|
self._foreign_long_count = 0 |
|
|
|
@property |
|
def ratio(self) -> float: |
|
if self._word_count <= 10 and self._foreign_long_count == 0: |
|
return 0.0 |
|
|
|
return self._bad_character_count / self._character_count |
|
|
|
|
|
class CjkInvalidStopPlugin(MessDetectorPlugin): |
|
""" |
|
GB(Chinese) based encoding often render the stop incorrectly when the content does not fit and |
|
can be easily detected. Searching for the overuse of '丅' and '丄'. |
|
""" |
|
|
|
def __init__(self) -> None: |
|
self._wrong_stop_count: int = 0 |
|
self._cjk_character_count: int = 0 |
|
|
|
def eligible(self, character: str) -> bool: |
|
return True |
|
|
|
def feed(self, character: str) -> None: |
|
if character in {"丅", "丄"}: |
|
self._wrong_stop_count += 1 |
|
return |
|
if is_cjk(character): |
|
self._cjk_character_count += 1 |
|
|
|
def reset(self) -> None: |
|
self._wrong_stop_count = 0 |
|
self._cjk_character_count = 0 |
|
|
|
@property |
|
def ratio(self) -> float: |
|
if self._cjk_character_count < 16: |
|
return 0.0 |
|
return self._wrong_stop_count / self._cjk_character_count |
|
|
|
|
|
class ArchaicUpperLowerPlugin(MessDetectorPlugin): |
|
def __init__(self) -> None: |
|
self._buf: bool = False |
|
|
|
self._character_count_since_last_sep: int = 0 |
|
|
|
self._successive_upper_lower_count: int = 0 |
|
self._successive_upper_lower_count_final: int = 0 |
|
|
|
self._character_count: int = 0 |
|
|
|
self._last_alpha_seen: Optional[str] = None |
|
self._current_ascii_only: bool = True |
|
|
|
def eligible(self, character: str) -> bool: |
|
return True |
|
|
|
def feed(self, character: str) -> None: |
|
is_concerned = character.isalpha() and is_case_variable(character) |
|
chunk_sep = is_concerned is False |
|
|
|
if chunk_sep and self._character_count_since_last_sep > 0: |
|
if ( |
|
self._character_count_since_last_sep <= 64 |
|
and character.isdigit() is False |
|
and self._current_ascii_only is False |
|
): |
|
self._successive_upper_lower_count_final += ( |
|
self._successive_upper_lower_count |
|
) |
|
|
|
self._successive_upper_lower_count = 0 |
|
self._character_count_since_last_sep = 0 |
|
self._last_alpha_seen = None |
|
self._buf = False |
|
self._character_count += 1 |
|
self._current_ascii_only = True |
|
|
|
return |
|
|
|
if self._current_ascii_only is True and is_ascii(character) is False: |
|
self._current_ascii_only = False |
|
|
|
if self._last_alpha_seen is not None: |
|
if (character.isupper() and self._last_alpha_seen.islower()) or ( |
|
character.islower() and self._last_alpha_seen.isupper() |
|
): |
|
if self._buf is True: |
|
self._successive_upper_lower_count += 2 |
|
self._buf = False |
|
else: |
|
self._buf = True |
|
else: |
|
self._buf = False |
|
|
|
self._character_count += 1 |
|
self._character_count_since_last_sep += 1 |
|
self._last_alpha_seen = character |
|
|
|
def reset(self) -> None: |
|
self._character_count = 0 |
|
self._character_count_since_last_sep = 0 |
|
self._successive_upper_lower_count = 0 |
|
self._successive_upper_lower_count_final = 0 |
|
self._last_alpha_seen = None |
|
self._buf = False |
|
self._current_ascii_only = True |
|
|
|
@property |
|
def ratio(self) -> float: |
|
if self._character_count == 0: |
|
return 0.0 |
|
|
|
return self._successive_upper_lower_count_final / self._character_count |
|
|
|
|
|
@lru_cache(maxsize=1024) |
|
def is_suspiciously_successive_range( |
|
unicode_range_a: Optional[str], unicode_range_b: Optional[str] |
|
) -> bool: |
|
""" |
|
Determine if two Unicode range seen next to each other can be considered as suspicious. |
|
""" |
|
if unicode_range_a is None or unicode_range_b is None: |
|
return True |
|
|
|
if unicode_range_a == unicode_range_b: |
|
return False |
|
|
|
if "Latin" in unicode_range_a and "Latin" in unicode_range_b: |
|
return False |
|
|
|
if "Emoticons" in unicode_range_a or "Emoticons" in unicode_range_b: |
|
return False |
|
|
|
|
|
|
|
if ("Latin" in unicode_range_a or "Latin" in unicode_range_b) and ( |
|
"Combining" in unicode_range_a or "Combining" in unicode_range_b |
|
): |
|
return False |
|
|
|
keywords_range_a, keywords_range_b = unicode_range_a.split( |
|
" " |
|
), unicode_range_b.split(" ") |
|
|
|
for el in keywords_range_a: |
|
if el in UNICODE_SECONDARY_RANGE_KEYWORD: |
|
continue |
|
if el in keywords_range_b: |
|
return False |
|
|
|
|
|
range_a_jp_chars, range_b_jp_chars = ( |
|
unicode_range_a |
|
in ( |
|
"Hiragana", |
|
"Katakana", |
|
), |
|
unicode_range_b in ("Hiragana", "Katakana"), |
|
) |
|
if (range_a_jp_chars or range_b_jp_chars) and ( |
|
"CJK" in unicode_range_a or "CJK" in unicode_range_b |
|
): |
|
return False |
|
if range_a_jp_chars and range_b_jp_chars: |
|
return False |
|
|
|
if "Hangul" in unicode_range_a or "Hangul" in unicode_range_b: |
|
if "CJK" in unicode_range_a or "CJK" in unicode_range_b: |
|
return False |
|
if unicode_range_a == "Basic Latin" or unicode_range_b == "Basic Latin": |
|
return False |
|
|
|
|
|
if ("CJK" in unicode_range_a or "CJK" in unicode_range_b) or ( |
|
unicode_range_a in ["Katakana", "Hiragana"] |
|
and unicode_range_b in ["Katakana", "Hiragana"] |
|
): |
|
if "Punctuation" in unicode_range_a or "Punctuation" in unicode_range_b: |
|
return False |
|
if "Forms" in unicode_range_a or "Forms" in unicode_range_b: |
|
return False |
|
|
|
return True |
|
|
|
|
|
@lru_cache(maxsize=2048) |
|
def mess_ratio( |
|
decoded_sequence: str, maximum_threshold: float = 0.2, debug: bool = False |
|
) -> float: |
|
""" |
|
Compute a mess ratio given a decoded bytes sequence. The maximum threshold does stop the computation earlier. |
|
""" |
|
|
|
detectors: List[MessDetectorPlugin] = [ |
|
md_class() for md_class in MessDetectorPlugin.__subclasses__() |
|
] |
|
|
|
length: int = len(decoded_sequence) + 1 |
|
|
|
mean_mess_ratio: float = 0.0 |
|
|
|
if length < 512: |
|
intermediary_mean_mess_ratio_calc: int = 32 |
|
elif length <= 1024: |
|
intermediary_mean_mess_ratio_calc = 64 |
|
else: |
|
intermediary_mean_mess_ratio_calc = 128 |
|
|
|
for character, index in zip(decoded_sequence + "\n", range(length)): |
|
for detector in detectors: |
|
if detector.eligible(character): |
|
detector.feed(character) |
|
|
|
if ( |
|
index > 0 and index % intermediary_mean_mess_ratio_calc == 0 |
|
) or index == length - 1: |
|
mean_mess_ratio = sum(dt.ratio for dt in detectors) |
|
|
|
if mean_mess_ratio >= maximum_threshold: |
|
break |
|
|
|
if debug: |
|
logger = getLogger("charset_normalizer") |
|
|
|
logger.log( |
|
TRACE, |
|
"Mess-detector extended-analysis start. " |
|
f"intermediary_mean_mess_ratio_calc={intermediary_mean_mess_ratio_calc} mean_mess_ratio={mean_mess_ratio} " |
|
f"maximum_threshold={maximum_threshold}", |
|
) |
|
|
|
if len(decoded_sequence) > 16: |
|
logger.log(TRACE, f"Starting with: {decoded_sequence[:16]}") |
|
logger.log(TRACE, f"Ending with: {decoded_sequence[-16::]}") |
|
|
|
for dt in detectors: |
|
logger.log(TRACE, f"{dt.__class__}: {dt.ratio}") |
|
|
|
return round(mean_mess_ratio, 3) |
|
|