Spaces:
Runtime error
Runtime error
initial commit
Browse files- .gitignore +7 -0
- app.py +116 -0
- requirements.txt +12 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*$py.class
|
3 |
+
|
4 |
+
*.so
|
5 |
+
.env
|
6 |
+
.~env
|
7 |
+
venv/
|
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# UI comes here
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
from langchain_text_splitters import Language
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
10 |
+
from transformers import pipeline
|
11 |
+
from langchain import HuggingFacePipeline
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
gpt_model = 'gpt-4-1106-preview'
|
16 |
+
embedding_model = 'text-embedding-3-small'
|
17 |
+
|
18 |
+
def init():
|
19 |
+
if "conversation" not in st.session_state:
|
20 |
+
st.session_state.conversation = None
|
21 |
+
if "chat_history" not in st.session_state:
|
22 |
+
st.session_state.chat_history = None
|
23 |
+
|
24 |
+
def init_llm_pipeline(openai_key):
|
25 |
+
if "llm" not in st.session_state:
|
26 |
+
model_id = "bigcode/starcoder2-15b"
|
27 |
+
quantization_config = BitsAndBytesConfig(
|
28 |
+
load_in_4bit=True,
|
29 |
+
bnb_4bit_compute_dtype=torch.float16
|
30 |
+
)
|
31 |
+
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_id,
|
35 |
+
quantization_config=quantization_config,
|
36 |
+
device_map="auto",
|
37 |
+
)
|
38 |
+
tokenizer.add_eos_token = True
|
39 |
+
tokenizer.pad_token_id = 0
|
40 |
+
tokenizer.padding_side = "left"
|
41 |
+
|
42 |
+
text_generation_pipeline = pipeline(
|
43 |
+
model=model,
|
44 |
+
tokenizer=tokenizer,
|
45 |
+
task="text-generation",
|
46 |
+
temperature=0.7,
|
47 |
+
repetition_penalty=1.1,
|
48 |
+
return_full_text=True,
|
49 |
+
max_new_tokens=300,
|
50 |
+
)
|
51 |
+
st.session_state.llm = HuggingFacePipeline(pipeline=text_generation_pipeline)
|
52 |
+
|
53 |
+
def get_text(docs):
|
54 |
+
return docs.getvalue().decode("utf-8")
|
55 |
+
|
56 |
+
def get_vectorstore(documents):
|
57 |
+
python_splitter = RecursiveCharacterTextSplitter.from_language(
|
58 |
+
language=Language.PYTHON, chunk_size=2000, chunk_overlap=200
|
59 |
+
)
|
60 |
+
texts = python_splitter.split_documents(documents)
|
61 |
+
|
62 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
63 |
+
|
64 |
+
db = FAISS.from_documents(texts, embeddings)
|
65 |
+
retriever = db.as_retriever(
|
66 |
+
search_type="mmr", # Also test "similarity"
|
67 |
+
search_kwargs={"k": 8},
|
68 |
+
)
|
69 |
+
return retriever
|
70 |
+
|
71 |
+
def get_conversation(retriever):
|
72 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
73 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
74 |
+
llm=st.session_state.llm,
|
75 |
+
retriever=retriever,
|
76 |
+
memory = memory
|
77 |
+
)
|
78 |
+
return conversation_chain
|
79 |
+
|
80 |
+
def handle_user_input(question):
|
81 |
+
response = st.session_state.conversation({'question':question})
|
82 |
+
st.session_state.chat_history = response['chat_history']
|
83 |
+
for i, message in enumerate(st.session_state.chat_history):
|
84 |
+
if i % 2 == 0:
|
85 |
+
with st.chat_message("user"):
|
86 |
+
st.write(message.content)
|
87 |
+
else:
|
88 |
+
with st.chat_message("assistant"):
|
89 |
+
st.write(message.content)
|
90 |
+
|
91 |
+
def main():
|
92 |
+
#load_dotenv()
|
93 |
+
init()
|
94 |
+
|
95 |
+
st.set_page_config(page_title="Coding-Assistent", page_icon=":books:")
|
96 |
+
|
97 |
+
st.header(":books: Coding-Assistent ")
|
98 |
+
user_input = st.chat_input("Stellen Sie Ihre Frage hier")
|
99 |
+
if user_input:
|
100 |
+
with st.spinner("Führe Anfrage aus ..."):
|
101 |
+
handle_user_input(user_input)
|
102 |
+
|
103 |
+
|
104 |
+
with st.sidebar:
|
105 |
+
st.subheader("Code Upload")
|
106 |
+
upload_docs=st.file_uploader("Dokumente hier hochladen", accept_multiple_files=True)
|
107 |
+
if st.button("Hochladen"):
|
108 |
+
with st.spinner("Analysiere Dokumente ..."):
|
109 |
+
init_llm_pipeline()
|
110 |
+
raw_text = get_text(upload_docs)
|
111 |
+
vectorstore = get_vectorstore(raw_text)
|
112 |
+
st.session_state.conversation = get_conversation(vectorstore)
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
langchain-community
|
4 |
+
python-dotenv
|
5 |
+
faiss-cpu
|
6 |
+
huggingface-hub
|
7 |
+
accelerate
|
8 |
+
bitsandbytes
|
9 |
+
torch
|
10 |
+
langchain-text-splitters
|
11 |
+
sentence_transformers
|
12 |
+
git+https://github.com/huggingface/transformers.git
|