from gradio.components import Component
import gradio as gr
import pandas as pd
from abc import ABC, abstractclassmethod
import inspect
class BaseTCOModel(ABC):
# TO DO: Find way to specify which component should be used for computing cost
def __setattr__(self, name, value):
if isinstance(value, Component):
self._components.append(value)
self.__dict__[name] = value
def __init__(self):
super(BaseTCOModel, self).__setattr__("_components", [])
self.use_case = None
def get_components(self) -> list[Component]:
return self._components
def get_components_for_cost_computing(self):
return self.components_for_cost_computing
def get_name(self):
return self.name
def register_components_for_cost_computing(self):
args = inspect.getfullargspec(self.compute_cost_per_token)[0][1:]
self.components_for_cost_computing = [self.__getattribute__(arg) for arg in args]
@abstractclassmethod
def compute_cost_per_token(self):
pass
@abstractclassmethod
def render(self):
pass
def set_name(self, name):
self.name = name
def set_latency(self, latency):
self.latency = latency
def get_latency(self):
return self.latency
class OpenAIModelGPT4(BaseTCOModel):
def __init__(self):
self.set_name("(SaaS) OpenAI GPT4")
self.set_latency("15s") #Default value for GPT4
super().__init__()
def render(self):
def define_cost_per_token(context_length):
if context_length == "8K":
cost_per_1k_input_tokens = 0.03
cost_per_1k_output_tokens = 0.06
else:
cost_per_1k_input_tokens = 0.06
cost_per_1k_output_tokens = 0.12
return cost_per_1k_input_tokens, cost_per_1k_output_tokens
self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True,
label="Context size",
visible=False, info="Number of tokens the model considers when processing text")
self.input_tokens_cost_per_token = gr.Number(0.03, visible=False,
label="($) Price/1K input prompt tokens",
interactive=False
)
self.output_tokens_cost_per_token = gr.Number(0.06, visible=False,
label="($) Price/1K output prompt tokens",
interactive=False
)
self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False)
self.context_length.change(define_cost_per_token, inputs=self.context_length, outputs=[self.input_tokens_cost_per_token, self.output_tokens_cost_per_token])
self.labor = gr.Number(0, visible=False,
label="($) Labor cost per month",
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model",
interactive=True
)
def compute_cost_per_token(self, input_tokens_cost_per_token, output_tokens_cost_per_token, labor):
cost_per_input_token = (input_tokens_cost_per_token / 1000)
cost_per_output_token = (output_tokens_cost_per_token / 1000)
return cost_per_input_token, cost_per_output_token, labor
class OpenAIModelGPT3_5(BaseTCOModel):
def __init__(self):
self.set_name("(SaaS) OpenAI GPT3.5 Turbo")
self.set_latency("5s") #Average latency value for GPT3.5 Turbo
super().__init__()
def render(self):
def define_cost_per_token(context_length):
if context_length == "4K":
cost_per_1k_input_tokens = 0.0015
cost_per_1k_output_tokens = 0.002
else:
cost_per_1k_input_tokens = 0.003
cost_per_1k_output_tokens = 0.004
return cost_per_1k_input_tokens, cost_per_1k_output_tokens
self.context_length = gr.Dropdown(choices=["4K", "16K"], value="4K", interactive=True,
label="Context size",
visible=False, info="Number of tokens the model considers when processing text")
self.input_tokens_cost_per_token = gr.Number(0.0015, visible=False,
label="($) Price/1K input prompt tokens",
interactive=False
)
self.output_tokens_cost_per_token = gr.Number(0.002, visible=False,
label="($) Price/1K output prompt tokens",
interactive=False
)
self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False)
self.context_length.change(define_cost_per_token, inputs=self.context_length, outputs=[self.input_tokens_cost_per_token, self.output_tokens_cost_per_token])
self.labor = gr.Number(0, visible=False,
label="($) Labor cost per month",
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model",
interactive=True
)
def compute_cost_per_token(self, input_tokens_cost_per_token, output_tokens_cost_per_token, labor):
cost_per_input_token = (input_tokens_cost_per_token / 1000)
cost_per_output_token = (output_tokens_cost_per_token / 1000)
return cost_per_input_token, cost_per_output_token, labor
class DIYLlama2Model(BaseTCOModel):
def __init__(self):
self.set_name("(Deploy yourself) Llama 2 70B")
self.set_latency("27s")
super().__init__()
def render(self):
def on_maxed_out_change(maxed_out, input_tokens_cost_per_token, output_tokens_cost_per_token):
output_tokens_cost_per_token = 0.06656
input_tokens_cost_per_token = 0.00052
r = maxed_out / 100
return input_tokens_cost_per_token * 0.65 / r, output_tokens_cost_per_token * 0.65/ r
self.source = gr.Markdown("""Source""", visible=False)
self.info = gr.Markdown("The cost per input and output tokens values below are from [these benchmark results](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper) that were obtained using the following initial configurations.",
interactive=False,
visible=False)
self.vm = gr.Textbox(value="2x A100 80GB NVLINK",
visible=False,
label="Instance of VM with GPU",
)
self.vm_cost_per_hour = gr.Number(4.42, label="Instance cost ($) per hour",
interactive=False, visible=False)
self.info_vm = gr.Markdown("This price above is from [CoreWeave's pricing web page](https://www.coreweave.com/gpu-cloud-pricing)", interactive=False, visible=False)
self.maxed_out = gr.Slider(minimum=1, maximum=100, value=65, step=1, label="Maxed out", info="Estimated average percentage of total GPU memory that is used. The instantaneous value can go from very high when many users are using the service to very low when no one does.", visible=False)
self.info_maxed_out = gr.Markdown(r"""This percentage influences the input and output cost/token values, and more precisely the number of token/s. Here is the formula used:
$CT = \frac{VM_C}{TS}$ where $TS = TS_{max} * \frac{MO}{100}$
with:
$CT$ = Cost per Token (Input or output),
$VM_C$ = VM Cost per second,
$TS$ = Tokens per second (Input or output),
$TS_{max}$ = Tokens per second when the GPU is maxed out at 100%,
$MO$ = Maxed Out,
""", interactive=False, visible=False)
self.input_tokens_cost_per_token = gr.Number(0.00052, visible=False,
label="($) Price/1K input prompt tokens",
interactive=False
)
self.output_tokens_cost_per_token = gr.Number(0.06656, visible=False,
label="($) Price/1K output prompt tokens",
interactive=False
)
self.maxed_out.change(on_maxed_out_change, inputs=[self.maxed_out, self.input_tokens_cost_per_token, self.output_tokens_cost_per_token], outputs=[self.input_tokens_cost_per_token, self.output_tokens_cost_per_token])
self.labor = gr.Number(5000, visible=False,
label="($) Labor cost per month",
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model",
interactive=True
)
def compute_cost_per_token(self, input_tokens_cost_per_token, output_tokens_cost_per_token, labor):
cost_per_input_token = (input_tokens_cost_per_token / 1000)
cost_per_output_token = (output_tokens_cost_per_token / 1000)
return cost_per_input_token, cost_per_output_token, labor
class CohereModel(BaseTCOModel):
def __init__(self):
self.set_name("(SaaS) Cohere")
self.set_latency("Not available")
super().__init__()
def render(self):
def on_model_change(model):
if model == "Default":
cost_per_1M_tokens = 15
else:
cost_per_1M_tokens = 30
cost_per_1K_tokens = cost_per_1M_tokens / 1000
return gr.update(value=cost_per_1K_tokens), gr.update(value=cost_per_1K_tokens)
self.model = gr.Dropdown(["Default", "Custom"], value="Default",
label="Model",
interactive=True, visible=False)
self.input_tokens_cost_per_token = gr.Number(0.015, visible=False,
label="($) Price/1K input prompt tokens",
interactive=False
)
self.output_tokens_cost_per_token = gr.Number(0.015, visible=False,
label="($) Price/1K output prompt tokens",
interactive=False
)
self.info = gr.Markdown("The cost per input and output tokens value is from Cohere's [pricing web page](https://cohere.com/pricing?utm_term=&utm_campaign=Cohere+Brand+%26+Industry+Terms&utm_source=adwords&utm_medium=ppc&hsa_acc=4946693046&hsa_cam=20368816223&hsa_grp=154209120409&hsa_ad=666081801359&hsa_src=g&hsa_tgt=dsa-19959388920&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad=1&gclid=CjwKCAjww7KmBhAyEiwA5-PUSlyO7pq0zxeVrhViXMd8WuILW6uY-cfP1-SVuUfs-leUAz14xHlOHxoCmfkQAvD_BwE)", interactive=False, visible=False)
self.model.change(on_model_change, inputs=self.model, outputs=[self.input_tokens_cost_per_token, self.output_tokens_cost_per_token])
self.labor = gr.Number(0, visible=False,
label="($) Labor cost per month",
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model",
interactive=True
)
def compute_cost_per_token(self, input_tokens_cost_per_token, output_tokens_cost_per_token, labor):
cost_per_input_token = input_tokens_cost_per_token / 1000
cost_per_output_token = output_tokens_cost_per_token / 1000
return cost_per_input_token, cost_per_output_token, labor
class ModelPage:
def __init__(self, Models: BaseTCOModel):
self.models: list[BaseTCOModel] = []
for Model in Models:
model = Model()
self.models.append(model)
def render(self):
for model in self.models:
model.render()
model.register_components_for_cost_computing()
def get_all_components(self) -> list[Component]:
output = []
for model in self.models:
output += model.get_components()
return output
def get_all_components_for_cost_computing(self) -> list[Component]:
output = []
for model in self.models:
output += model.get_components_for_cost_computing()
return output
def make_model_visible(self, name:str, use_case: gr.Dropdown):
# First decide which indexes
output = []
for model in self.models:
if model.get_name() == name:
output+= [gr.update(visible=True)] * len(model.get_components())
# Set use_case value in the model
model.use_case = use_case
else:
output+= [gr.update(visible=False)] * len(model.get_components())
return output
def compute_cost_per_token(self, *args):
begin=0
current_model = args[-3]
current_input_tokens = args[-2]
current_output_tokens = args[-1]
for model in self.models:
model_n_args = len(model.get_components_for_cost_computing())
if current_model == model.get_name():
model_args = args[begin:begin+model_n_args]
cost_per_input_token, cost_per_output_token, labor_cost = model.compute_cost_per_token(*model_args)
model_tco = cost_per_input_token * current_input_tokens + cost_per_output_token * current_output_tokens
latency = model.get_latency()
return model_tco, latency, labor_cost
begin = begin+model_n_args