Spaces:
Running
Running
File size: 70,717 Bytes
19dc0f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 |
import os
os.environ["WANDB_MODE"] = "offline"
# os.environ["WANDB_DISABLED"] = "true"
import json
import math
import random
import shutil
import sys
import threading
import time
import traceback
from datetime import datetime
from pathlib import Path
import gradio as gr
import pandas as pd
import torch
import transformers
from functools import partial
from .custom_scheduler import FPSchedulerTrainer, FPNEFtuneTrainer
from .matplotgraph import create_graph
from .train_utils import get_available_loras_local, precise_cut, sliding_block_cut, download_file_from_url
from datasets import Dataset, load_dataset
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_kbit_training,
set_peft_model_state_dict
)
from peft.utils.other import \
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING as model_to_lora_modules
from transformers.models.auto.modeling_auto import (
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
)
from modules import shared, utils
from modules.ui import create_refresh_button
from modules.evaluate import (
calculate_perplexity,
generate_markdown_table,
save_past_evaluations
)
from modules.logging_colors import logger
from modules.models import reload_model
from modules.utils import natural_keys
import warnings
warnings.filterwarnings(action = "ignore", message="torch.utils.checkpoint:")
warnings.filterwarnings(action = "ignore", message="`do_sample` is set to `False`")
params = {
"display_name": "Training PRO",
"is_tab": True
}
non_serialized_params = {
"debug_slicer": False,
"Lora_sortedByTime": False,
"stop_at_loss": 0,
"save_steps_under_loss": 0.0,
"save_checkpoint_now": False,
"training_loop": False,
"current_stability": 0,
"save_epochs": 0,
"checkpoint_offset": 0,
"epoch_offset":0,
"safe_serialization": False,
}
MODEL_CLASSES = {v[1]: v[0] for v in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.items()}
PARAMETERS = ["lora_name", "always_override", "save_steps", "micro_batch_size", "batch_size", "epochs", "learning_rate", "lr_scheduler_type", "lora_rank", "lora_alpha", "lora_dropout", "cutoff_len", "dataset", "eval_dataset", "format", "eval_steps", "raw_text_file", "higher_rank_limit", "warmup_steps", "optimizer", "hard_cut_string", "train_only_after", "stop_at_loss", "add_eos_token", "min_chars", "report_to", "precize_slicing_overlap", "add_eos_token_type", "save_steps_under_loss", "add_bos_token", "training_projection","sliding_window","warmup_ratio","grad_accumulation","neft_noise_alpha"]
WANT_INTERRUPT = False
train_log = {}
train_template = {}
train_log_graph = []
train_choices = ["all","q-k-v-o","q-k-v","k-v-down","q-v"]
statistics = {
'loss': [],
'lr': [],
}
RED = "\033[91m"
YELLOW = "\033[93m"
GREEN = "\033[92m"
RESET = "\033[0m"
def ui():
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
tmp = gr.State('')
with gr.Row():
with gr.Column():
# YY.MM.DD
gr.Markdown("`Ver: 23.10.20 (REV2)` This is enhanced version of QLora Training. [Maintained by FP](https://github.com/FartyPants/Training_PRO/tree/main)")
with gr.Row():
with gr.Column(scale=5):
with gr.Row():
copy_from = gr.Dropdown(label='Copy parameters from', value='None', choices=get_available_loras_local(non_serialized_params['Lora_sortedByTime']), elem_classes=['slim-dropdown'])
create_refresh_button(copy_from, lambda: None, lambda: {'choices': get_available_loras_local(non_serialized_params['Lora_sortedByTime'])}, 'refresh-button')
with gr.Column():
sort_byTime = gr.Checkbox(label='Sort list by Date', value=False, info='Sorts Loras by date created.', elem_classes=['no-background'])
with gr.Row():
with gr.Column(scale=5):
lora_name = gr.Textbox(label='Name', info='The name of your new LoRA file')
with gr.Column():
always_override = gr.Checkbox(label='Override Existing Files', value=False, info='If the name is the same, checking will replace the existing file, and unchecking will load and continue from it (the rank must be the same).', elem_classes=['no-background'])
with gr.Row():
with gr.Column():
lora_rank = gr.Slider(label='LoRA Rank', value=32, minimum=0, maximum=1024, step=4, info='Also called dimension count. Higher values = larger file, more content control. Smaller values = smaller file, less control. Use 4 or 8 for style, 128 or 256 to teach, 1024+ for fine-detail on big data. More VRAM is needed for higher ranks.')
lora_alpha = gr.Slider(label='LoRA Alpha', value=64, minimum=0, maximum=2048, step=4, info='This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
batch_size = gr.Slider(visible= False, label='Batch Size', value=0, minimum=0, maximum=1024, step=4, info='Now Replaced with Gradient accumulation. Keeping it for sake of old saved data')
micro_batch_size = gr.Slider(label='True Batch Size', value=4, minimum=1, maximum=128, step=1, info='Specifies how many text blocks per step will be trained. The higher value, the better the concept of training will be, but it requires more GPU memory and it reduces speed.')
grad_accumulation = gr.Slider(label='Gradient Accumulation Steps', value=1, minimum=1, maximum=256, step=1, info="Virtually multiplies the Batch Size by averaging the learning over more than one step. VRAM friendly. Evens out loss fluctuations but can also degrade training fidelity.")
with gr.Column():
stop_at_loss = gr.Slider(label='Stop at loss (Can be changed during training)', minimum=0.0, maximum=3.0, step=0.1, value=0.00, info='The process will automatically stop once the desired loss value is reached.')
gr.Markdown(" ")
epochs = gr.Number(label='Epochs', value=3, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
learning_rate = gr.Textbox(label='Learning Rate', value='3e-4', info='In scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
lr_scheduler_type = gr.Dropdown(label='LR Scheduler', value='linear', choices=['linear', 'constant', 'constant_with_warmup', 'cosine', 'cosine_with_restarts', 'polynomial', 'inverse_sqrt', 'FP_low_epoch_annealing', 'FP_half_time_annealing','FP_raise_fall_creative'], info='Learning rate scheduler - defines how the learning rate changes over time. Custom schedulers: FP_low_epoch_annealing, FP_half_time_annealing, FP_raise_fall_creative (see README)', elem_classes=['slim-dropdown'])
with gr.Accordion(label='Checkpoints', open=True):
with gr.Row():
with gr.Column():
save_steps = gr.Number(label='Save every n steps', value=0, info='A checkpoint will be saved every n steps and at each Epoch boundary. (0 = OFF)')
with gr.Column():
save_steps_under_loss = gr.Slider(label='Save at 10% Loss change', value=1.8, minimum=0.0, maximum=3.0, step=0.1, info="Saves checkpoints at (or bellow) this loss and then each time loss falls by at least 10% This works independently from 'Save every n steps'")
with gr.Row():
save_chackpoint_now = gr.Button('Queue Checkpoint Now')
with gr.Accordion(label='Advanced Options', open=True):
with gr.Row():
with gr.Column():
warmup_steps = gr.Number(label='Warmup Steps', value=100, info='Number of max steps used for a linear warmup. Reduces early over-fitting by the first training blocks. Value has precedent over Warmup Ratio. Aligns to the closest multiple of graddient accumulation')
warmup_ratio = gr.Slider(label='Warmup Ratio', minimum=0.0, maximum=0.2, step=0.025, value=0.0, info='Ratio of total training steps that will be used for a linear warmup. It applies only if Warmup Step is 0.')
neft_noise_alpha = gr.Slider(label='NEFtune noise scale', minimum=0.0, maximum=15, step=1, value=0.0, info='Add noise to the training to improve generalization. [0 - OFF, Starting value to experiment: 5]')
training_projection = gr.Radio(value = train_choices[4], label='LLaMA Target Projections', info='Change the targets (LORA is typically q-v)', choices=train_choices)
lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers. This can help reduce overfitting. Most users should leave at default.')
optimizer = gr.Dropdown(label='Optimizer', value='adamw_torch', choices=['adamw_hf', 'adamw_torch', 'adamw_torch_fused', 'adamw_torch_xla', 'adamw_apex_fused', 'adafactor', 'adamw_bnb_8bit', 'adamw_anyprecision', 'sgd', 'adagrad'], info='Different optimizer implementation options, for advanced users. Effects of different options are not well documented yet.', elem_classes=['slim-dropdown'])
with gr.Column():
train_only_after = gr.Textbox(label='Train Only After', value='', info='Only consider text *after* this string in any given chunk for training. For Alpaca datasets, use "### Response:" to only train the response and ignore the input.')
add_bos_token = gr.Checkbox(label='Add BOS token', value=True, info="Adds BOS token for each dataset item")
add_eos_token = gr.Checkbox(label='Add EOS token', value=False, info="Adds EOS token for each dataset item")
add_eos_token_type = gr.Dropdown(label='EOS placement (Text file)', choices=['Every Block', 'Hard Cut Blocks Only'], value='Every Block', info='', allow_custom_value = False)
higher_rank_limit = gr.Checkbox(label='Enable higher ranks', value=False, info='If checked, changes Rank/Alpha slider above to go much higher. This will not work without a datacenter-class GPU.')
report_to = gr.Radio(label="Save detailed logs with", value="None", choices=["None", "wandb", "tensorboard"], interactive=True)
# for future
#with gr.Accordion(label='Dynamic Scheduler', open = False):
# ds_min_epochs = gr.Number(label='Minimum Epochs', value='1', info='Minimum epochs that will be always performed before ramp down can be triggered')
# ds_max_epochs = gr.Number(label='Maximum Epochs (fallback)', value='50', info='Maximum Epochs before the training will bail out completely (should be a large number)')
# ds_loss_trigger = gr.Slider(label='Trigger Loss', minimum=0.0, maximum=2.8, step=0.1, value=1.6, info='Loss at which the ramp down schedule will be triggered')
# ds_loss_rolling_window = gr.Number(label='Loss rolling average', value='4', info='Calculate loss by averaging last x numbers to avoid jumps and noise')
# ds_epochs_to_ramp = gr.Slider(label='Ramp down ratio', minimum=0.0, maximum=2.0, step=0.1, value=1.00, info='How long the ramp down will last relative to ellapsed steps (before trigger)')
# gr.Markdown('These are settings for FP_dynamic_loss_trigger scheduler. The scheduler will do warm up, then hold constant untill a loss falls under Trigger Loss, then it will commence linear ramp down schedule and stop. The length of ramp down is set by Ramp down ratio where (ramp down steps) = ratio * (elapsed steps). (The time to completition shown will be very high untill ramp down is triggered.)')
with gr.Column():
with gr.Tab(label='Formatted Dataset'):
with gr.Row():
with gr.Column():
with gr.Row():
dataset = gr.Dropdown(choices=get_datasets('training/datasets', 'json'), value='None', label='Dataset', info='The dataset file to use for training.', elem_classes=['slim-dropdown'])
create_refresh_button(dataset, lambda: None, lambda: {'choices': get_datasets('training/datasets', 'json')}, 'refresh-button')
with gr.Row():
eval_dataset = gr.Dropdown(choices=get_datasets('training/datasets', 'json'), value='None', label='Evaluation Dataset', info='The (optional) dataset file used to evaluate the model after training.', elem_classes=['slim-dropdown'])
create_refresh_button(eval_dataset, lambda: None, lambda: {'choices': get_datasets('training/datasets', 'json')}, 'refresh-button')
with gr.Column():
with gr.Row():
format = gr.Dropdown(choices=get_datasets('training/formats', 'json'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.', elem_classes=['slim-dropdown'])
create_refresh_button(format, lambda: None, lambda: {'choices': get_datasets('training/formats', 'json')}, 'refresh-button')
with gr.Row():
eval_steps = gr.Number(label='Evaluate every n steps', value=100, info='If an evaluation dataset is given, test it every time this many steps pass.')
with gr.Tab(label="Text file"):
with gr.Row():
raw_text_file = gr.Dropdown(choices=get_datasets('training/datasets', 'txt'), value='None', label='Text file', info='The text file to use for training.', elem_classes=['slim-dropdown'])
create_refresh_button(raw_text_file, lambda: None, lambda: {'choices': get_datasets('training/datasets', 'txt')}, 'refresh-button')
with gr.Row():
with gr.Column():
precize_slicing_overlap = gr.Checkbox(label='Add Overlapping blocks', value = True)
sliding_window = gr.Checkbox(label='DEMENTOR Long-form Learning by FP (Highly Experimental, use low epochs)', value = False, info='Deep Memorization Enforcement Through Overlapping and Repetition. (I named it, so shush). Special process for learning long-form text using low amount of epochs.')
#debug_slicer = gr.Checkbox(label='Dump sentencelist.json to logs', value = non_serialized_params['debug_slicer'], info='Debug Slicer')
with gr.Column():
hard_cut_string = gr.Textbox(label='Hard Cut String', value='\\n\\n\\n', info='String that indicates a cut between logical blocks of text (ex. Ideas or Chapters). Helps prevent unwanted overlap between unrelated ideas.')
min_chars = gr.Number(label='Ignore small blocks', value=0, info='Ignore Text blocks that have less or equal characters than this number.')
with gr.Tab(label="URL"):
with gr.Row():
with gr.Column():
download_file_url = gr.Textbox(label='Download JSON or txt file to datasets (or formats) folder', value='',info='The URL of a file to download. If on github, make sure you get url of the raw file (https://raw.githubusercontent.com/...). If huggin face, make sure the url has /resolve/ in it not /blob/')
with gr.Row():
download_check_overwrite = gr.Checkbox(label='Overwrite', value=False, info='Overwrite if file exist')
download_folder = gr.Radio(label="Destination", value='training/datasets', choices=['training/datasets', 'training/formats'], interactive=True)
download_button = gr.Button('Download')
download_status = gr.Textbox(label='Download Status', value='', interactive=False)
with gr.Row():
with gr.Column():
with gr.Row():
cutoff_len = gr.Slider(label='Chunk Length (Cutoff Length)', minimum=32, maximum=2048, value=256, step=32, info='The maximum length of a chunk (in tokens). Applies to both JSON dataset and text files. Higher values require much more VRAM.')
with gr.Row():
with gr.Column():
check_dataset_btn = gr.Button('Verify Dataset/Text File and suggest data entries')
check_dataset_txt = gr.Textbox(label='Dataset info', value='')
with gr.Row():
start_button = gr.Button("Start LoRA Training", variant='primary')
stop_button = gr.Button("Interrupt")
with gr.Accordion(label="Graph", open=True):
with gr.Row():
# show_actions_button = False - we use old gradio
plot_graph = gr.LinePlot(x="epoch", y="value", title="Loss Metrics", overlay_point=True, tooltip=["epoch", "value"], x_lim=[0, 1], y_lim=[0, 3.5], width=500, height=250)
output = gr.Markdown(value="Ready")
with gr.Tab('Perplexity evaluation', elem_id='evaluate-tab'):
with gr.Row():
with gr.Column():
models = gr.Dropdown(utils.get_available_models(), label='Models', multiselect=True)
evaluate_text_file = gr.Dropdown(choices=['wikitext', 'ptb', 'ptb_new'] + get_datasets('training/datasets', 'txt')[1:], value='wikitext', label='Input dataset', info='The text file on which the model will be evaluated. The first options are automatically downloaded: wikitext, ptb, and ptb_new. The next options are your local text files under training/datasets.')
with gr.Row():
with gr.Column():
stride_length = gr.Slider(label='Stride', minimum=1, maximum=2048, value=512, step=1, info='Used to make the evaluation faster at the cost of accuracy. 1 = slowest but most accurate. 512 is a common value.')
with gr.Column():
max_length = gr.Slider(label='max_length', minimum=0, maximum=shared.settings['truncation_length_max'], value=0, step=1, info='The context for each evaluation. If set to 0, the maximum context length for the model will be used.')
with gr.Row():
start_current_evaluation = gr.Button("Evaluate loaded model")
start_evaluation = gr.Button("Evaluate selected models")
stop_evaluation = gr.Button("Interrupt")
with gr.Column():
evaluation_log = gr.Markdown(value='')
evaluation_table = gr.Dataframe(value=generate_markdown_table(), interactive=True)
with gr.Row():
save_comments = gr.Button('Save comments', elem_classes="small-button")
refresh_table = gr.Button('Refresh the table', elem_classes="small-button")
# Training events
all_params = [lora_name, always_override, save_steps, micro_batch_size, batch_size, epochs, learning_rate, lr_scheduler_type, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, eval_steps, raw_text_file, higher_rank_limit, warmup_steps, optimizer, hard_cut_string, train_only_after, stop_at_loss, add_eos_token, min_chars, report_to, precize_slicing_overlap, add_eos_token_type, save_steps_under_loss, add_bos_token, training_projection,sliding_window,warmup_ratio,grad_accumulation, neft_noise_alpha]
def fix_old_version(batch_size_val,micro_batch_size_val, grad_accumulation_val):
if batch_size_val>0:
gradient_acc = batch_size_val // micro_batch_size_val
print(f"Using Old version of Batch Size ({batch_size_val}) to set Gradient Accumulation: {gradient_acc}")
return gradient_acc
return grad_accumulation_val
copy_from.change(partial(do_copy_params, all_params= all_params), copy_from, all_params).then(fix_old_version,[batch_size,micro_batch_size, grad_accumulation],grad_accumulation)
start_button.click(do_train, all_params, [output,plot_graph])
stop_button.click(do_interrupt, None, None, queue=False)
higher_rank_limit.change(change_rank_limit, [higher_rank_limit], [lora_rank, lora_alpha])
def trigger_stop_at_loss(stop_at_loss_value):
non_serialized_params.update({"stop_at_loss": stop_at_loss_value})
if non_serialized_params['training_loop']:
print(f"Queue: [Stop at loss Change] to {stop_at_loss_value}")
stop_at_loss.change(trigger_stop_at_loss, stop_at_loss, None)
def trigger_save_checkpoint():
non_serialized_params.update({"save_checkpoint_now": True})
if non_serialized_params['training_loop']:
print("Queue: [Save checkpoint] Checkpoint will be saved after the current step is finished.")
else:
print("Use during the training to save the checkpoint at any time.")
def update_button():
return gr.Button.update('[Checkpoint in Queue]', variant='stop', interactive=True)
def update_button2():
time.sleep(1.0)
return gr.Button.update('Queue Checkpoint Now', variant='secondary',interactive = True)
save_chackpoint_now.click(trigger_save_checkpoint, None, None).then(update_button, None,save_chackpoint_now).then(update_button2, None,save_chackpoint_now)
dataset_calc_params = [save_steps,micro_batch_size, epochs, cutoff_len, dataset, format, raw_text_file, warmup_steps, hard_cut_string, min_chars, precize_slicing_overlap,sliding_window,warmup_ratio,grad_accumulation]
def check_dataset(save_steps:int, micro_batch_size: int, epochs: int, cutoff_len: int, dataset:str, format:str, raw_text_file:str, warmup_steps:int, hard_cut_string:str, min_chars:int, precize_slicing_overlap:bool,sliding_window:bool,warmup_ratio:float,grad_accumulation:int):
result = "Specify JSON dastaset or Text file"
total_blocks = 0
if shared.tokenizer is None:
yield "Tokenizer is not available. Please Load some Model first."
return
if raw_text_file not in ['None', '']:
logger.info("Loading Text file...")
fullpath = clean_path('training/datasets', f'{raw_text_file}')
fullpath = Path(fullpath)
if fullpath.is_dir():
logger.info('Training path directory {}'.format(raw_text_file))
raw_text = ""
file_paths = sorted(fullpath.glob('*.txt'), key=lambda path: natural_keys(path.name))
for file_path in file_paths:
if file_path.is_file():
with file_path.open('r', encoding='utf-8') as file:
raw_text += file.read().replace('\r', '')
logger.info(f"Loaded training file: {file_path.name}")
else:
try:
with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r', encoding='utf-8') as file:
raw_text = file.read().replace('\r', '')
except:
yield f"{raw_text_file}.txt doesn't seem to exsist anymore... check your training/datasets folder"
return
if min_chars<0:
min_chars = 0
# == New more precise slicing on sentence boundary ==
if sliding_window:
text_chunks = sliding_block_cut(raw_text, min_chars, False, cutoff_len, hard_cut_string,non_serialized_params['debug_slicer'])
else:
text_chunks = precise_cut(raw_text, precize_slicing_overlap, min_chars, False, cutoff_len, hard_cut_string,non_serialized_params['debug_slicer'])
total_blocks = len(text_chunks)
result = f"Text: ({raw_text_file}.txt) has {total_blocks} blocks (Block Size {cutoff_len} tokens)"
del text_chunks
else:
if dataset in ['None', '']:
yield "Select dataset or text file."
return
if format in ['None', '']:
yield "Select format choice for dataset."
return
with open(clean_path('training/formats', f'{format}.json'), 'r', encoding='utf-8-sig') as formatFile:
format_data: dict[str, str] = json.load(formatFile)
def generate_prompt(data_point: dict[str, str]):
for options, data in format_data.items():
if set(options.split(',')) == set(x[0] for x in data_point.items() if (type(x[1]) is str and len(x[1].strip()) > 0)):
for key, val in data_point.items():
if type(val) is str:
data = data.replace(f'%{key}%', val)
return data
raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')
def tokenize_dummy(prompt):
input_ids = shared.tokenizer.encode(prompt, truncation=True, max_length=cutoff_len)
labels = [1] * len(input_ids)
input_ids = torch.tensor(input_ids)
return {
"input_ids": input_ids,
"labels": labels,
"attention_mask": input_ids.ne(shared.tokenizer.pad_token_id),
}
def generate_and_tokenize_prompt(data_point):
prompt = generate_prompt(data_point)
return tokenize_dummy(prompt)
logger.info("Loading JSON datasets...")
data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
data_keys = []
if data:
if 'train' in data: # Check if the 'train' split exists in the dataset
data_keys = list(data['train'][0].keys())
print("Data Keys:", data_keys)
else:
print("The dataset is empty.")
train_data = data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))
total_blocks = train_data.num_rows
result = f"Dataset: ({dataset}.json) has {total_blocks} blocks @ length = {cutoff_len} tokens\n(Keys: {data_keys} - Format: {format}.json): "
#for options, data in format_data.items():
# format_keys = options.split(',')
# result += f"{format_keys}, "
#result = result.rstrip()
#result = result.rstrip(',')
if total_blocks>0:
number_ofSteps = int(math.ceil(total_blocks / micro_batch_size) * epochs)
num_stepsPer_epoch = int(math.ceil(number_ofSteps/epochs))
min_warm = math.ceil(100 / grad_accumulation)
warmup_steps_suggest = min(int(min_warm*grad_accumulation), int(math.ceil(number_ofSteps * 0.1)))
warmup_steps_suggest = min(warmup_steps_suggest,num_stepsPer_epoch)
save_each_n_min = int(math.ceil(number_ofSteps/10))
save_each_n_max = int(math.ceil(number_ofSteps/5))
gradient_accumulation_max = int(total_blocks)//micro_batch_size
result += f"\n[Batch Size: {micro_batch_size}, Epochs: {epochs}, Gradient Accumulation: {grad_accumulation}]\n"
result += f"Total number of steps: {number_ofSteps}\n"
result += f"Steps per each Epoch: {num_stepsPer_epoch}\n"
result += f"Suggestions:\n"
result += f"Checkpoints: Save every {save_each_n_min} - {save_each_n_max} steps (Current: {int(save_steps)})\n"
result += f"Warmup steps: {warmup_steps_suggest} (Current: {int(warmup_steps)})"
if gradient_accumulation_max < grad_accumulation:
result += f"\n\nWARNING: Gradient Accumulation {grad_accumulation} is too high: It should be below {gradient_accumulation_max}"
yield result
return
check_dataset_btn.click(check_dataset, dataset_calc_params ,check_dataset_txt)
# Evaluation events. For some reason, the interrupt event
# doesn't work with the .then() syntax, so I write them one
# by one in this ugly but functional way.
ev = start_evaluation.click(calculate_perplexity, [models, evaluate_text_file, stride_length, max_length], evaluation_log, show_progress=False)
start_evaluation.click(generate_markdown_table, None, evaluation_table, show_progress=False)
start_current_evaluation.click(lambda: ['current model'], None, tmp)
ev_cur = start_current_evaluation.click(calculate_perplexity, [tmp, evaluate_text_file, stride_length, max_length], evaluation_log, show_progress=False)
start_current_evaluation.click(generate_markdown_table, None, evaluation_table, show_progress=False)
stop_evaluation.click(None, None, None, cancels=[ev, ev_cur], queue=False)
refresh_table.click(generate_markdown_table, None, evaluation_table, show_progress=True)
save_comments.click(
save_past_evaluations, evaluation_table, None).then(
lambda: "Comments saved.", None, evaluation_log, show_progress=False)
def reload_lora():
return gr.Dropdown.update(choices=get_available_loras_local(non_serialized_params['Lora_sortedByTime']))
# nonserialized items
sort_byTime.change(lambda x: non_serialized_params.update({"Lora_sortedByTime": x}), sort_byTime, None).then(reload_lora,None,copy_from)
#debug_slicer.change(lambda x: non_serialized_params.update({"debug_slicer": x}), debug_slicer, None)
def update_dataset():
return gr.update(choices=get_datasets('training/datasets', 'json')), gr.update(choices=get_datasets('training/datasets', 'txt'))
download_button.click(download_file_from_url, [download_file_url,download_check_overwrite,download_folder] , download_status).then(update_dataset,None,[dataset , raw_text_file])
def get_datasets(path: str, ext: str):
# include subdirectories for raw txt files to allow training from a subdirectory of txt files
#if ext == "txt":
# return ['None'] + sorted(set([k.stem for k in list(Path(path).glob('txt')) + list(Path(path).glob('*/')) if k.stem != 'put-trainer-datasets-here']), key=natural_keys)
return ['None'] + sorted(set([k.stem for k in Path(path).glob(f'*.{ext}') if k.stem != 'put-trainer-datasets-here']), key=natural_keys)
def do_interrupt():
global WANT_INTERRUPT
WANT_INTERRUPT = True
def do_copy_params(lora_name: str, all_params):
if lora_name:
f_name = f"{shared.args.lora_dir}/{clean_path(None, lora_name)}/training_parameters.json"
if Path(f_name).is_file():
with open(f_name, 'r', encoding='utf-8') as format_file:
params: dict[str, str] = json.load(format_file)
else:
params = {}
else:
params = {}
result = list()
for i in range(0, len(PARAMETERS)):
key = PARAMETERS[i]
if key in params:
result.append(params[key])
else:
result.append(all_params[i])
return result
def change_rank_limit(use_higher_ranks: bool):
mult = 2 if use_higher_ranks else 1
return {"maximum": 1024 * mult, "__type__": "update"}, {"maximum": 2048 * mult, "__type__": "update"}
def clean_path(base_path: str, path: str):
"""Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
path = path.replace('\\', '/').replace('..', '_')
if base_path is None:
return path
return f'{Path(base_path).absolute()}/{path}'
def backup_adapter(input_folder):
# Get the creation date of the file adapter_model.bin
try:
adapter_file = Path(f"{input_folder}/adapter_model.bin")
if adapter_file.is_file():
logger.info("Backing up existing LoRA adapter...")
creation_date = datetime.fromtimestamp(adapter_file.stat().st_ctime)
creation_date_str = creation_date.strftime("Backup-%Y-%m-%d")
# Create the new subfolder
subfolder_path = Path(f"{input_folder}/{creation_date_str}")
subfolder_path.mkdir(parents=True, exist_ok=True)
# Check if the file already exists in the subfolder
backup_adapter_file = Path(f"{input_folder}/{creation_date_str}/adapter_model.bin")
if backup_adapter_file.is_file():
print(" - Backup already exists. Skipping backup process.")
return
# Copy existing files to the new subfolder
existing_files = Path(input_folder).iterdir()
for file in existing_files:
if file.is_file():
shutil.copy2(file, subfolder_path)
except Exception as e:
print("An error occurred in backup_adapter:", str(e))
def calc_trainable_parameters(model):
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
num_params = param.numel()
# if using DS Zero 3 and the weights are initialized empty
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
all_param += num_params
if param.requires_grad:
trainable_params += num_params
return trainable_params, all_param
def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float, add_eos_token: bool, min_chars: int, report_to: str, precize_slicing_overlap: bool, add_eos_token_type: str, save_steps_under_loss: float, add_bos_token: bool, training_projection: str,sliding_window:bool,warmup_ratio:float, grad_accumulation: int,neft_noise_alpha:float):
if shared.args.monkey_patch:
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
replace_peft_model_with_int4_lora_model
)
replace_peft_model_with_int4_lora_model()
global train_log_graph
global WANT_INTERRUPT
WANT_INTERRUPT = False
statistics['loss'] = []
statistics['loss'].append({'epoch': 0, 'value': 0})
zero_pd = pd.DataFrame(statistics['loss'])
# == Input validation / processing ==
yield "Preparing the input...", zero_pd
lora_file_path = clean_path(None, lora_name)
if lora_file_path.strip() == '':
yield "Missing or invalid LoRA file name input.", zero_pd
return
lora_file_path = f"{Path(shared.args.lora_dir)}/{lora_file_path}"
actual_lr = float(learning_rate)
model_type = type(shared.model).__name__
if model_type in MODEL_CLASSES:
model_id = MODEL_CLASSES[model_type]
else:
model_id = "llama"
if model_type == "PeftModelForCausalLM":
if len(shared.lora_names) > 0:
yield "You are trying to train a LoRA while you already have another LoRA loaded. This will work, but may have unexpected effects. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*", zero_pd
logger.warning("Training LoRA over top of another LoRA. May have unexpected effects.")
else:
yield "Model ID not matched due to LoRA loading. Consider reloading base model. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*", zero_pd
logger.warning("Model ID not matched due to LoRA loading. Consider reloading base model.")
else:
yield "LoRA training has only currently been validated for LLaMA, OPT, GPT-J, and GPT-NeoX models. Unexpected errors may follow. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*", zero_pd
logger.warning(f"LoRA training has only currently been validated for LLaMA, OPT, GPT-J, and GPT-NeoX models. (Found model type: {model_type})")
time.sleep(5)
if shared.args.loader == 'GPTQ-for-LLaMa' and not shared.args.monkey_patch:
yield "LoRA training with GPTQ-for-LLaMa requires loading with `--monkey-patch`", zero_pd
return
if cutoff_len <= 0 or micro_batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0:
yield "Cannot input zeroes.", zero_pd
return
#in new version we dumped this in favor of grad_accumulation
#set it to zero fo new save
batch_size = 0
gradient_accumulation_steps = grad_accumulation #batch_size // micro_batch_size
shared.tokenizer.pad_token_id = 0
shared.tokenizer.padding_side = "left"
def encode(text, prepend_bos_token):
result = shared.tokenizer.encode(text, truncation=True, max_length=cutoff_len)
# Check if the first two tokens are BOS
if len(result) >= 2 and result[:2] == [shared.tokenizer.bos_token_id, shared.tokenizer.bos_token_id]:
result = result[1:]
if not prepend_bos_token and result[0] == shared.tokenizer.bos_token_id:
result = result[1:]
return result
def tokenize(prompt, append_eos_token=False, prepend_bos_token = False):
if train_only_after == '' or train_only_after not in prompt:
input_ids = encode(prompt, prepend_bos_token)
if append_eos_token and input_ids[-1] != shared.tokenizer.eos_token_id and len(input_ids) < cutoff_len:
input_ids.append(shared.tokenizer.eos_token_id)
input_ids = [shared.tokenizer.pad_token_id] * (cutoff_len - len(input_ids)) + input_ids
labels = [1] * len(input_ids)
else:
ind = prompt.index(train_only_after) + len(train_only_after)
before_tokens = encode(prompt[:ind], prepend_bos_token)
after_tokens = encode(prompt[ind:], False)
if append_eos_token and after_tokens[-1] != shared.tokenizer.eos_token_id:
after_tokens.append(shared.tokenizer.eos_token_id)
full_length = len(after_tokens) + len(before_tokens)
if full_length > cutoff_len:
after_tokens = after_tokens[:cutoff_len - len(before_tokens)]
else:
before_tokens = [shared.tokenizer.pad_token_id] * (cutoff_len - full_length) + before_tokens
input_ids = before_tokens + after_tokens
labels = [-100] * len(before_tokens) + [1] * len(after_tokens)
input_ids = torch.tensor(input_ids)
return {
"input_ids": input_ids,
"labels": labels,
"attention_mask": input_ids.ne(shared.tokenizer.pad_token_id),
}
train_template.clear()
#reset stuff
print(f"*** LoRA: {lora_name} ***")
non_serialized_params.update({"stop_at_loss": stop_at_loss})
non_serialized_params.update({"save_steps_under_loss": save_steps_under_loss+0.01})
non_serialized_params.update({"save_checkpoint_now": False})
non_serialized_params.update({"training_loop": False})
non_serialized_params.update({"current_stability": 0})
non_serialized_params.update({"save_epochs": 0})
non_serialized_params.update({"checkpoint_offset": 0})
non_serialized_params.update({"epoch_offset": 0})
train_log_graph.clear()
# == Prep the dataset, format, etc ==
if raw_text_file not in ['None', '']:
train_template["template_type"] = "raw_text"
logger.info("Loading text file...")
fullpath = clean_path('training/datasets', f'{raw_text_file}')
fullpath = Path(fullpath)
if fullpath.is_dir():
logger.info('Training path directory {}'.format(raw_text_file))
raw_text = ""
file_paths = sorted(fullpath.glob('*.txt'), key=lambda path: natural_keys(path.name))
for file_path in file_paths:
if file_path.is_file():
with file_path.open('r', encoding='utf-8') as file:
raw_text += file.read().replace('\r', '')
logger.info(f"Loaded training file: {file_path.name}")
else:
with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r', encoding='utf-8') as file:
raw_text = file.read().replace('\r', '')
# FPHAM PRECISE SLICING
if min_chars<0:
min_chars = 0
add_EOS_to_all = add_eos_token and add_eos_token_type == 'Every Block'
add_EOS_to_HC = add_eos_token and add_eos_token_type != 'Every Block'
#print (f"add_eos_token {add_eos_token}, add_EOS_to_all {add_EOS_to_all}, add_EOS_to_HC {add_EOS_to_HC}")
# == New more precise slicing on sentence boundary ==
if sliding_window:
text_chunks = sliding_block_cut(raw_text, min_chars, add_EOS_to_HC, cutoff_len, hard_cut_string,non_serialized_params['debug_slicer'])
else:
text_chunks = precise_cut(raw_text, precize_slicing_overlap, min_chars, add_EOS_to_HC, cutoff_len, hard_cut_string,non_serialized_params['debug_slicer'])
train_data = Dataset.from_list([tokenize(x, add_EOS_to_all, add_bos_token) for x in text_chunks])
if add_EOS_to_all:
print(f"Added EOS to {len(text_chunks)} blocks")
print(f"All Data Blocks: {len(text_chunks)}")
del text_chunks
eval_data = None
else:
if dataset in ['None', '']:
yield "Missing dataset choice input, cannot continue.", zero_pd
return
if format in ['None', '']:
yield "Missing format choice input, cannot continue.", zero_pd
return
train_template["template_type"] = "dataset"
with open(clean_path('training/formats', f'{format}.json'), 'r', encoding='utf-8-sig') as formatFile:
format_data: dict[str, str] = json.load(formatFile)
# == store training prompt ==
for _, value in format_data.items():
prompt_key = f"template_{len(train_template)}"
train_template[prompt_key] = value
def generate_prompt(data_point: dict[str, str]):
for options, data in format_data.items():
if set(options.split(',')) == set(x[0] for x in data_point.items() if (type(x[1]) is str and len(x[1].strip()) > 0)):
for key, val in data_point.items():
if type(val) is str:
data = data.replace(f'%{key}%', val)
return data
raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')
def generate_and_tokenize_prompt(data_point):
prompt = generate_prompt(data_point)
return tokenize(prompt, add_eos_token, add_bos_token)
logger.info("Loading JSON datasets...")
data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
train_data = data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))
print(f"BOS: {add_bos_token} EOS: {add_eos_token}")
print(f"Data Blocks: {train_data.num_rows}")
if eval_dataset == 'None':
eval_data = None
else:
eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
eval_data = eval_data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))
# == We MUST reload model if it went through any previous training, even failed one ==
if shared.model_dirty_from_training:
selected_model = shared.model_name
if selected_model:
print("\033[1;31;1m(Model has been modified by previous training, it needs to be reloaded...)\033[0;37;0m")
try:
yield f"Reloading {selected_model}...", zero_pd
reload_model()
shared.tokenizer.pad_token_id = 0
shared.tokenizer.padding_side = "left"
if shared.model is not None:
print("Model reloaded OK, continue with training.")
else:
return f"Failed to load {selected_model}."
except:
exc = traceback.format_exc()
logger.error('Failed to reload the model.')
print(exc)
return exc.replace('\n', '\n\n')
# == Start prepping the model itself ==
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
logger.info("Getting model ready...")
# here we can disable gradient checkpoint, by default = true, use_gradient_checkpointing=True
prepare_model_for_kbit_training(shared.model)
# base model is now frozen and should not be reused for any other LoRA training than this one
shared.model_dirty_from_training = True
print(f"Transformers Model Type: {YELLOW}{model_type}{RESET}")
if training_projection==train_choices[0]:
model_to_lora_modules[model_id] = ["gate_proj","down_proj","up_proj","q_proj","k_proj","v_proj","o_proj"]
elif training_projection==train_choices[1]:
model_to_lora_modules[model_id] = ["q_proj","k_proj", "v_proj", "o_proj"]
elif training_projection==train_choices[2]:
model_to_lora_modules[model_id] = ["q_proj","k_proj", "v_proj"]
elif training_projection==train_choices[3]:
model_to_lora_modules[model_id] = ["k_proj", "v_proj", "down_proj"]
else:
model_to_lora_modules[model_id] = ["q_proj", "v_proj"]
logger.info("Preparing for training...")
config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
target_modules=model_to_lora_modules[model_id],
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM"
)
# == Backup the existing adapter ==
if not always_override:
backup_adapter(lora_file_path)
# == get model trainable params
model_trainable_params, model_all_params = calc_trainable_parameters(shared.model)
try:
logger.info("Creating LoRA model...")
lora_model = get_peft_model(shared.model, config)
if not always_override and Path(f"{lora_file_path}/adapter_model.bin").is_file():
logger.info("Loading existing LoRA data...")
state_dict_peft = torch.load(f"{lora_file_path}/adapter_model.bin")
set_peft_model_state_dict(lora_model, state_dict_peft)
print(f" + Continue Training on {RED}{lora_file_path}/adapter_model.bin{RESET}")
#load training_log.json if exist
if Path(f"{lora_file_path}/training_log.json").is_file():
with open(f"{lora_file_path}/training_log.json", 'r') as json_file:
json_ilog = json.load(json_file)
for key, value in json_ilog.items():
if key=='current_steps':
non_serialized_params.update({"checkpoint_offset": int(value+1)})
print(f" + Checkpoints will be saved with offset: {RED}{non_serialized_params['checkpoint_offset']}{RESET}")
if key=='epoch':
non_serialized_params.update({"epoch_offset": value})
print(f" + Epoch offset: {RED}{non_serialized_params['epoch_offset']}{RESET}")
if Path(f"{lora_file_path}/training_graph.json").is_file():
try:
with open(f"{lora_file_path}/training_graph.json", 'r') as json_file:
train_log_graph = json.load(json_file)
print(" + Training Graph loaded")
except:
print(f"Can't read training_graph")
except:
yield traceback.format_exc().replace('\n', '\n\n'), zero_pd
return
if shared.args.monkey_patch:
from alpaca_lora_4bit.autograd_4bit import Autograd4bitQuantLinear
from alpaca_lora_4bit.models import Linear4bitLt
for _, m in lora_model.named_modules():
if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt):
if m.is_v1_model:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
class Tracked():
def __init__(self):
self.current_steps = 0
self.max_steps = 0
self.did_save = False
tracked = Tracked()
actual_save_steps = math.ceil(save_steps / gradient_accumulation_steps)
class Callbacks(transformers.TrainerCallback):
def on_step_begin(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
tracked.current_steps = state.global_step * gradient_accumulation_steps
tracked.max_steps = state.max_steps * gradient_accumulation_steps
ssteps10 = int(max(2,(state.max_steps/epochs)*0.1))
if WANT_INTERRUPT:
control.should_epoch_stop = True
control.should_training_stop = True
else:
current_loss = float(train_log.get('loss', 0.0))
current_epoch_int = int(float(train_log.get('epoch', 0.0)))
force_save = False
current_steps_offset = tracked.current_steps + non_serialized_params['checkpoint_offset']
folder_save = f"checkpoint-{current_steps_offset}"
# save if triggered by user
if non_serialized_params['save_checkpoint_now']:
force_save = True
non_serialized_params.update({"save_checkpoint_now": False})
print(f"\033[1;31;1mSave Checkpoint manually trigerred.\033[0;37;0m")
folder_save = f"checkpoint-{current_steps_offset}-user"
patience = 3 # Set the number of consecutive steps for tracking stability
if gradient_accumulation_steps==1:
patience = 4
min_steps = ssteps10
# Save each time the loss is below the threshold
if current_loss < non_serialized_params['save_steps_under_loss'] and current_loss > 0 and state.global_step > min_steps:
current_stability = non_serialized_params['current_stability']
current_stability += 1
non_serialized_params.update({"current_stability": current_stability})
if current_stability >= patience:
current_stability = 0
non_serialized_params.update({"current_stability": current_stability})
current_loss_dec = round(current_loss, 2)
loss_str = f"{current_loss_dec:.2f}"
loss_str = loss_str.replace('.', '_')
new_save = (current_loss_dec-0.1) + 0.01
non_serialized_params.update({"save_steps_under_loss": new_save})
folder_save = f"checkpoint-{current_steps_offset}-loss-{loss_str}"
force_save = True
else:
# Reset stability if the loss goes above the threshold
non_serialized_params.update({"current_stability": 0})
# Save full epochs
if actual_save_steps>0 and current_epoch_int > non_serialized_params['save_epochs'] and state.global_step > min_steps:
current_epoch_offset = current_epoch_int
if non_serialized_params['epoch_offset'] > 0:
current_epoch_offset = current_epoch_int + round(non_serialized_params['epoch_offset'], 2)
ep_off_str = f"{current_epoch_offset}"
ep_off_str = ep_off_str.replace('.', '_')
folder_save = f"checkpoint-{current_steps_offset}-epoch-{ep_off_str}"
non_serialized_params.update({"save_epochs": current_epoch_int})
force_save = True
# save each actual_save_steps
if state.global_step > 0 and actual_save_steps > 0 and state.global_step % actual_save_steps == 0:
folder_save = f"checkpoint-{current_steps_offset}"
force_save = True
if force_save:
lora_model.save_pretrained(f"{lora_file_path}/{folder_save}/", safe_serialization = non_serialized_params['safe_serialization'])
print(f"\033[1;30;40mStep: {tracked.current_steps:6} \033[0;37;0m Saved: [{folder_save}]")
# Save log
with open(f"{lora_file_path}/{folder_save}/training_log.json", 'w', encoding='utf-8') as file:
json.dump(train_log, file, indent=2)
# == Save training prompt ==
with open(f"{lora_file_path}/{folder_save}/training_prompt.json", 'w', encoding='utf-8') as file:
json.dump(train_template, file, indent=2)
def on_substep_end(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
tracked.current_steps += 1
if WANT_INTERRUPT:
control.should_epoch_stop = True
control.should_training_stop = True
def on_log(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, logs, **kwargs):
train_log.update(logs)
current_steps_offset = tracked.current_steps + non_serialized_params['checkpoint_offset']
current_epoch_offset = train_log.get('epoch', 0.0) + non_serialized_params['epoch_offset']
train_log.update({"current_steps": tracked.current_steps})
train_log.update({"current_steps_adjusted": current_steps_offset})
train_log.update({"epoch_adjusted": current_epoch_offset})
if WANT_INTERRUPT:
print("\033[1;31;1mInterrupted by user\033[0;37;0m")
if non_serialized_params['checkpoint_offset']>0:
print(f"\033[1;30;40mStep: {tracked.current_steps:6} [+{non_serialized_params['checkpoint_offset']}] \033[0;37;0m", end='')
else:
print(f"\033[1;30;40mStep: {tracked.current_steps:6} \033[0;37;0m", end='')
graphentry = {
'current_steps': int(train_log.get('current_steps_adjusted',0)),
'loss': float(train_log.get('loss', 0.0)),
'learning_rate': float(train_log.get('learning_rate', 0.0)),
'epoch': float(train_log.get('epoch_adjusted', 0.0))
}
cur_loss = float(train_log.get('loss', 0.0))
cur_lr = float(train_log.get('learning_rate', 0.0))
cur_epoch = float(train_log.get('epoch', 0.0))
if len(statistics['loss']) == 1:
first_epoch = statistics['loss'][0]['epoch']
first_value = statistics['loss'][0]['value']
if first_value ==0:
statistics['loss'] = []
statistics['loss'].append({'epoch': cur_epoch, 'value': cur_loss})
statistics['lr'].append({'epoch': cur_epoch, 'value': cur_lr})
# Add the entry to the continuous log
train_log_graph.append(graphentry)
# Save the graph log for now, we can later generate full graph
with open(f"{lora_file_path}/training_graph.json", 'w') as file:
json.dump(train_log_graph, file, indent=4)
if 'loss' in logs:
loss = float(logs['loss'])
if loss <= stop_at_loss:
control.should_epoch_stop = True
control.should_training_stop = True
print(f"{RED}Stop Loss {stop_at_loss} reached.{RESET}")
# FPHAM SAMPLE REQ Transformers error handling
gradient_accumulation_max = int(train_data.num_rows)//micro_batch_size
if gradient_accumulation_max < gradient_accumulation_steps:
print(f"{RED}WARNING:{RESET} Current gradient accumulation is {RED}too high{RESET} for the amount of training data.")
print(f"Gradient accumulation: {gradient_accumulation_steps} should be less than: {gradient_accumulation_max}. {RED}This could crash Accelerate/Transformers{RESET}")
#min_batchSize = sample_req*micro_batch_size
print(f"Preferable fix: {RED}Increase the size of dataset{RESET}")
print(f"... or Decrerase Gradient Accumulation {RED}{gradient_accumulation_steps}{RESET} to below {GREEN}{gradient_accumulation_max}{RESET}")
gradient_accumulation_steps = max(1,gradient_accumulation_max-1)
print(f"Last resort fix for this run: Lowering Gradient accumulation to {GREEN}{gradient_accumulation_steps}{RESET} [Good luck]")
else:
print(f"Data Size Check: Gradient accumulation: {YELLOW}{gradient_accumulation_steps}{RESET} <= Blocks/Batch {gradient_accumulation_max} ... {GREEN}[OK]{RESET}")
#END OF FPHAM SAMPLE REQ
# FPHAM Custom Scheduler ==
custom_scheduller = False
lr_scheduler_type_arg = lr_scheduler_type
if lr_scheduler_type == 'FP_low_epoch_annealing':
custom_scheduller = True
lr_scheduler_type_arg = 'cosine'
elif lr_scheduler_type == 'FP_half_time_annealing':
custom_scheduller = True
lr_scheduler_type_arg = 'constant'
elif lr_scheduler_type =='FP_raise_fall_creative':
custom_scheduller = True
lr_scheduler_type_arg = 'constant_with_warmup'
#gradient_checkpointing=True
args=transformers.TrainingArguments(
report_to=report_to if report_to != "None" else None,
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=math.ceil(warmup_steps / gradient_accumulation_steps),
warmup_ratio = warmup_ratio,
num_train_epochs=epochs,
learning_rate=actual_lr,
fp16=False if shared.args.cpu else True,
optim=optimizer,
logging_steps=1,
evaluation_strategy="steps" if eval_data is not None else "no",
eval_steps=math.ceil(eval_steps / gradient_accumulation_steps) if eval_data is not None else None,
save_strategy="steps" if eval_data is not None else "no",
output_dir=lora_file_path,
lr_scheduler_type=lr_scheduler_type_arg,
load_best_model_at_end=eval_data is not None,
# TODO: Enable multi-device support
ddp_find_unused_parameters=None,
no_cuda=shared.args.cpu,
)
if custom_scheduller:
trainer = FPSchedulerTrainer(
neftune_noise_alpha=neft_noise_alpha,
model=lora_model,
train_dataset=train_data,
eval_dataset=eval_data,
args=args,
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
callbacks=list([Callbacks()])
)
elif neft_noise_alpha > 0:
trainer = FPNEFtuneTrainer(
neftune_noise_alpha=neft_noise_alpha,
model=lora_model,
train_dataset=train_data,
eval_dataset=eval_data,
args=args,
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
callbacks=list([Callbacks()])
)
else:
trainer = transformers.Trainer(
model=lora_model,
train_dataset=train_data,
eval_dataset=eval_data,
args=args,
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
callbacks=list([Callbacks()])
)
# END OF FPHAM CUSTOM SCHEDULER
lora_model.config.use_cache = False
if torch.__version__ >= "2" and sys.platform != "win32":
lora_model = torch.compile(lora_model)
# == Save parameters for reuse ==
with open(f"{lora_file_path}/training_parameters.json", 'w', encoding='utf-8') as file:
vars = locals()
json.dump({x: vars[x] for x in PARAMETERS}, file, indent=2)
# == Save training prompt ==
with open(f"{lora_file_path}/training_prompt.json", 'w', encoding='utf-8') as file:
json.dump(train_template, file, indent=2)
# == Main run and monitor loop ==
logger.info("Starting training...")
yield "Starting...", zero_pd
lora_trainable_param, lora_all_param = calc_trainable_parameters(lora_model)
projections_string = ", ".join([projection.replace("_proj", "") for projection in model_to_lora_modules[model_id]])
print(f"Training '{model_id}' model using {YELLOW}({projections_string}){RESET} projections")
if lora_all_param > 0:
print(f"Trainable params: {lora_trainable_param:,d} ({RED}{100 * lora_trainable_param / lora_all_param:.4f} %{RESET}), All params: {lora_all_param:,d} (Model: {model_all_params:,d})")
train_log.update({"base_model_name": shared.model_name})
train_log.update({"base_model_class": shared.model.__class__.__name__})
train_log.update({"base_loaded_in_4bit": getattr(lora_model, "is_loaded_in_4bit", False)})
train_log.update({"base_loaded_in_8bit": getattr(lora_model, "is_loaded_in_8bit", False)})
train_log.update({"projections": projections_string})
if non_serialized_params['checkpoint_offset'] > 0:
train_log.update({"last_run_steps_offset": non_serialized_params['checkpoint_offset']})
train_log.update({"last_run_epoch_offset": non_serialized_params['epoch_offset']})
if non_serialized_params['checkpoint_offset'] > 0:
print(f"Continue training on {RED}previous adapter{RESET} from epoch: {RED}{non_serialized_params['epoch_offset']}{RESET}")
if stop_at_loss > 0:
print(f"Monitoring loss {RED}(Auto-Stop at: {stop_at_loss}){RESET}")
if WANT_INTERRUPT:
yield "Interrupted before start.", zero_pd
return
def log_train_dataset(trainer):
decoded_entries = []
# Try to decode the entries and write the log file
try:
# Iterate over the first 10 elements in the dataset (or fewer if there are less than 10)
for i in range(min(10, len(trainer.train_dataset))):
decoded_text = shared.tokenizer.decode(trainer.train_dataset[i]['input_ids'])
decoded_entries.append({"value": decoded_text})
# Write the log file
Path('logs').mkdir(exist_ok=True)
with open(Path('logs/train_dataset_sample.json'), 'w') as json_file:
json.dump(decoded_entries, json_file, indent=4)
logger.info("Log file 'train_dataset_sample.json' created in the 'logs' directory.")
except Exception as e:
logger.error(f"Failed to create log file due to error: {e}")
def threaded_run():
log_train_dataset(trainer)
trainer.train()
# Note: save in the thread in case the gradio thread breaks (eg browser closed)
lora_model.save_pretrained(lora_file_path, safe_serialization = non_serialized_params['safe_serialization'])
logger.info("LoRA training run is completed and saved.")
# Save log
with open(f"{lora_file_path}/training_log.json", 'w', encoding='utf-8') as file:
json.dump(train_log, file, indent=2)
thread = threading.Thread(target=threaded_run)
thread.start()
last_step = 0
start_time = time.perf_counter()
while thread.is_alive():
time.sleep(0.5)
if statistics['loss']:
max_value_dict = max(statistics['loss'], key=lambda x: x['value'])
max_value = max_value_dict['value']+0.4
first_epoch = statistics['loss'][0]['epoch']
last_epoch = statistics['loss'][-1]['epoch']
else:
max_value = 3.5
last_epoch = 0
first_epoch = 0
if WANT_INTERRUPT:
losses = gr.LinePlot.update(
value = pd.DataFrame(statistics['loss']),
x="epoch", y="value",
title="Loss Metrics",
overlay_point=True, tooltip=["epoch", "value"],
x_lim=[first_epoch,last_epoch], y_lim=[0,max_value],
width=500, height=250 )
yield "Interrupting, please wait... *(Run will stop after the current training step completes.)*", losses
elif tracked.current_steps != last_step:
last_step = tracked.current_steps
time_elapsed = time.perf_counter() - start_time
lastloss = float(train_log.get('loss', 0.0))
non_serialized_params.update({"training_loop": True})
if lastloss > 0:
lastloss_str = f", ... Current Loss: `{lastloss:.2f}`"
else:
lastloss_str = ""
if time_elapsed <= 0:
timer_info = ""
total_time_estimate = 999
else:
its = tracked.current_steps / time_elapsed
if its > 1:
timer_info = f"`{its:.2f}` it/s"
else:
timer_info = f"`{1.0/its:.2f}` s/it"
total_time_estimate = (1.0 / its) * (tracked.max_steps)
if stop_at_loss != non_serialized_params['stop_at_loss']:
stop_at_loss = non_serialized_params['stop_at_loss']
print(f"Stop at loss changed {RED}(Auto-Stop at: {stop_at_loss}){RESET}")
losses = gr.LinePlot.update(
value = pd.DataFrame(statistics['loss']),
x="epoch", y="value",
title="Loss Metrics",
overlay_point=True, tooltip=["epoch", "value"],
x_lim=[first_epoch,last_epoch], y_lim=[0,max_value],
width=500, height=250 )
yield f"Running... **{tracked.current_steps}** / **{tracked.max_steps}** ... {timer_info}, {format_time(time_elapsed)} / {format_time(total_time_estimate)} ... {format_time(total_time_estimate - time_elapsed)} remaining {lastloss_str}", losses
# Saving in the train thread might fail if an error occurs, so save here if so.
#return_pd = pd.DataFrame(statistics['loss'])
if statistics['loss']:
max_value_dict = max(statistics['loss'], key=lambda x: x['value'])
max_value = max_value_dict['value']+0.4
first_epoch = statistics['loss'][0]['epoch']
last_epoch = statistics['loss'][-1]['epoch']
else:
max_value = 3.5
last_epoch = 0
first_epoch = 0
return_pd = gr.LinePlot.update(
value = pd.DataFrame(statistics['loss']),
x="epoch", y="value",
title="Loss Metrics",
overlay_point=True, tooltip=["epoch", "value"],
x_lim=[first_epoch,last_epoch], y_lim=[0,max_value],
width=500, height=250)
non_serialized_params.update({"training_loop": False})
if not tracked.did_save:
logger.info("Training complete, saving...")
lora_model.save_pretrained(lora_file_path, safe_serialization = non_serialized_params['safe_serialization'])
if WANT_INTERRUPT:
logger.info("Training interrupted.")
yield f"Interrupted by user. LoRA saved to `{lora_file_path}`.", return_pd
else:
logger.info("Training complete!")
yield f"Done! LoRA saved to `{lora_file_path}`.\n\nBefore testing your new LoRA, make sure to first reload the model, as it is currently dirty from training.", return_pd
create_graph(lora_file_path, lora_name)
def format_time(seconds: float):
if seconds < 120:
return f"`{seconds:.0f}` seconds"
minutes = seconds / 60
if minutes < 120:
return f"`{minutes:.0f}` minutes"
hours = minutes / 60
return f"`{hours:.0f}` hours"
|