Spaces:
Running
Running
import re | |
import string | |
import orjson | |
import streamlit as st | |
from annotated_text.util import get_annotated_html | |
from pipelines.keyphrase_extraction_pipeline import KeyphraseExtractionPipeline | |
from pipelines.keyphrase_generation_pipeline import KeyphraseGenerationPipeline | |
def load_pipeline(chosen_model): | |
if "keyphrase-extraction" in chosen_model: | |
return KeyphraseExtractionPipeline(chosen_model) | |
elif "keyphrase-generation" in chosen_model: | |
return KeyphraseGenerationPipeline(chosen_model) | |
def extract_keyphrases(): | |
st.session_state.keyphrases = pipe(st.session_state.input_text) | |
st.session_state.history[f"run_{st.session_state.current_run_id}"] = { | |
"run_id": st.session_state.current_run_id, | |
"model": st.session_state.chosen_model, | |
"text": st.session_state.input_text, | |
"keyphrases": st.session_state.keyphrases, | |
} | |
st.session_state.current_run_id += 1 | |
def get_annotated_text(text, keyphrases, color="#d294ff"): | |
for keyphrase in keyphrases: | |
text = re.sub( | |
rf"({keyphrase})([^A-Za-z])", | |
rf"$K:{keyphrases.index(keyphrase)}\2", | |
text, | |
flags=re.I, | |
count=1, | |
) | |
result = [] | |
for i, word in enumerate(text.split(" ")): | |
if "$K" in word and re.search( | |
"(\d+)$", word.translate(str.maketrans("", "", string.punctuation)) | |
): | |
result.append( | |
( | |
re.sub( | |
r"\$K:\d+", | |
keyphrases[ | |
int( | |
re.search( | |
"(\d+)$", | |
word.translate( | |
str.maketrans("", "", string.punctuation) | |
), | |
).group(1) | |
) | |
], | |
word, | |
), | |
"KEY", | |
color, | |
) | |
) | |
else: | |
if i == len(st.session_state.input_text.split(" ")) - 1: | |
result.append(f" {word}") | |
elif i == 0: | |
result.append(f"{word} ") | |
else: | |
result.append(f" {word} ") | |
return result | |
def render_output(layout, runs, reverse=False): | |
runs = list(runs.values())[::-1] if reverse else list(runs.values()) | |
for run in runs: | |
layout.markdown( | |
f""" | |
<p style=\"margin-bottom: 0rem\"><strong>Run:</strong> {run.get('run_id')}</p> | |
<p style=\"margin-bottom: 0rem\"><strong>Model:</strong> {run.get('model')}</p> | |
""", | |
unsafe_allow_html=True, | |
) | |
if "generation" in run.get("model"): | |
abstractive_keyphrases = [ | |
keyphrase | |
for keyphrase in run.get("keyphrases") | |
if keyphrase.lower() not in run.get("text").lower() | |
] | |
layout.markdown( | |
f"<p style=\"margin-bottom: 0rem\"><strong>Absent keyphrases:</strong> {', '.join(abstractive_keyphrases) if abstractive_keyphrases else 'None' }</p>", | |
unsafe_allow_html=True, | |
) | |
result = get_annotated_text(run.get("text"), list(run.get("keyphrases"))) | |
layout.markdown( | |
f""" | |
<p style="margin-bottom: 0.5rem"><strong>Text:</strong></p> | |
{get_annotated_html(*result)} | |
""", | |
unsafe_allow_html=True, | |
) | |
layout.markdown("---") | |
if "config" not in st.session_state: | |
with open("config.json", "r") as f: | |
content = f.read() | |
st.session_state.config = orjson.loads(content) | |
st.session_state.history = {} | |
st.session_state.keyphrases = [] | |
st.session_state.current_run_id = 1 | |
st.set_page_config( | |
page_icon="π", | |
page_title="Keyphrase extraction/generation with Transformers", | |
layout="centered", | |
) | |
with open("css/style.css") as f: | |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) | |
st.header("π Keyphrase extraction/generation with Transformers") | |
description = """ | |
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases | |
from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it. | |
Currently, classical machine learning methods, that use statistics and linguistics, are widely used | |
for the extraction process. The fact that these methods have been widely used in the community has | |
the advantage that there are many easy-to-use libraries. Now with the recent innovations in | |
deep learning methods (such as recurrent neural networks and transformers, GANS, β¦), | |
keyphrase extraction can be improved. These new methods also focus on the semantics and | |
context of a document, which is quite an improvement. | |
This space gives you the ability to test around with some keyphrase extraction and generation models. | |
Keyphrase extraction models are transformers models fine-tuned as a token classification problem where | |
the tokens in a text are annotated as B (Beginning of a keyphrase), I (Inside a keyphrases), | |
and O (Outside a keyhprase). | |
While keyphrase extraction can only extract keyphrases from a given text. Keyphrase generation models | |
work a bit differently. Here you use an encoder-decoder model like BART to generate keyphrases from a given text. | |
These models also have the ability to generate keyphrases, which are not present in the text π€―. | |
Do you want to see some magic π§ββοΈ? Try it out yourself! π | |
""" | |
st.write(description) | |
with st.form("keyphrase-extraction-form"): | |
selectbox_container, _ = st.columns(2) | |
st.session_state.chosen_model = selectbox_container.selectbox( | |
"Choose your model:", st.session_state.config.get("models") | |
) | |
st.markdown( | |
f"For more information about the chosen model, please be sure to check out the [π€ Model Card](https://huggingface.co/DeDeckerThomas/{st.session_state.chosen_model})." | |
) | |
st.session_state.input_text = ( | |
st.text_area("β Input", st.session_state.config.get("example_text"), height=250) | |
.replace("\n", " ") | |
.strip() | |
) | |
with st.spinner("Extracting keyphrases..."): | |
pressed = st.form_submit_button("Extract") | |
if pressed and st.session_state.input_text != "": | |
with st.spinner("Loading pipeline..."): | |
pipe = load_pipeline( | |
f"{st.session_state.config.get('model_author')}/{st.session_state.chosen_model}" | |
) | |
with st.spinner("Extracting keyphrases"): | |
extract_keyphrases() | |
elif st.session_state.input_text == "": | |
st.error("The text input is empty π Please provide a text in the input field.") | |
options = st.multiselect( | |
"Specify the runs you want to see", | |
st.session_state.history.keys(), | |
format_func=lambda run_id: f"Run {run_id.split('_')[1]}", | |
) | |
if len(st.session_state.history.keys()) > 0: | |
if options: | |
render_output( | |
st, | |
{key: st.session_state.history[key] for key in options}, | |
) | |
else: | |
render_output(st, st.session_state.history, reverse=True) | |