Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from pipelines.keyphrase_extraction_pipeline import KeyphraseExtractionPipeline | |
from pipelines.keyphrase_generation_pipeline import KeyphraseGenerationPipeline | |
import orjson | |
from annotated_text.util import get_annotated_html | |
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode | |
import re | |
import numpy as np | |
if "config" not in st.session_state: | |
with open("config.json", "r") as f: | |
content = f.read() | |
st.session_state.config = orjson.loads(content) | |
st.session_state.data_frame = pd.DataFrame(columns=["model"]) | |
st.session_state.keyphrases = [] | |
st.set_page_config( | |
page_icon="π", | |
page_title="Keyphrase extraction/generation with Transformers", | |
layout="wide", | |
) | |
if "select_rows" not in st.session_state: | |
st.session_state.selected_rows = [] | |
st.header("π Keyphrase extraction/generation with Transformers") | |
col1, col2 = st.empty().columns(2) | |
def load_pipeline(chosen_model): | |
if "keyphrase-extraction" in chosen_model: | |
return KeyphraseExtractionPipeline(chosen_model) | |
elif "keyphrase-generation" in chosen_model: | |
return KeyphraseGenerationPipeline(chosen_model) | |
def extract_keyphrases(): | |
st.session_state.keyphrases = pipe(st.session_state.input_text) | |
st.session_state.data_frame = pd.concat( | |
[ | |
st.session_state.data_frame, | |
pd.DataFrame( | |
data=[ | |
np.concatenate( | |
( | |
[ | |
st.session_state.chosen_model, | |
st.session_state.input_text, | |
], | |
st.session_state.keyphrases, | |
) | |
) | |
], | |
columns=["model", "text"] | |
+ [str(i) for i in range(len(st.session_state.keyphrases))], | |
), | |
], | |
ignore_index=True, | |
axis=0, | |
).fillna("") | |
def get_annotated_text(text, keyphrases): | |
for keyphrase in keyphrases: | |
text = re.sub( | |
f"({keyphrase})", | |
keyphrase.replace(" ", "$K"), | |
text, | |
flags=re.I, | |
) | |
result = [] | |
for i, word in enumerate(text.split(" ")): | |
if re.sub(r"[^\w\s]", "", word) in keyphrases: | |
result.append((word, "KEY", "#21c354")) | |
elif "$K" in word: | |
result.append((" ".join(word.split("$K")), "KEY", "#21c354")) | |
else: | |
if i == len(st.session_state.input_text.split(" ")) - 1: | |
result.append(f" {word}") | |
elif i == 0: | |
result.append(f"{word} ") | |
else: | |
result.append(f" {word} ") | |
return result | |
def rerender_output(layout): | |
layout.subheader("π§ Output") | |
if ( | |
len(st.session_state.keyphrases) > 0 | |
and len(st.session_state.selected_rows) == 0 | |
): | |
text, keyphrases = st.session_state.input_text, st.session_state.keyphrases | |
else: | |
text, keyphrases = ( | |
st.session_state.selected_rows["text"].values[0], | |
[ | |
keyphrase | |
for keyphrase in st.session_state.selected_rows.loc[ | |
:, | |
st.session_state.selected_rows.columns.difference( | |
["model", "text"] | |
), | |
] | |
.astype(str) | |
.values.tolist()[0] | |
if keyphrase != "" | |
], | |
) | |
result = get_annotated_text(text, keyphrases) | |
layout.markdown( | |
get_annotated_html(*result), | |
unsafe_allow_html=True, | |
) | |
chosen_model = col1.selectbox( | |
"Choose your model:", | |
st.session_state.config.get("models"), | |
) | |
st.session_state.chosen_model = chosen_model | |
pipe = load_pipeline( | |
f"{st.session_state.config.get('model_author')}/{st.session_state.chosen_model}" | |
) | |
st.session_state.input_text = col1.text_area( | |
"Input", st.session_state.config.get("example_text"), height=300 | |
) | |
pressed = col1.button("Extract", on_click=extract_keyphrases) | |
if len(st.session_state.data_frame.columns) > 0: | |
st.subheader("π History") | |
builder = GridOptionsBuilder.from_dataframe( | |
st.session_state.data_frame, sortable=False | |
) | |
builder.configure_selection(selection_mode="single", use_checkbox=True) | |
builder.configure_column("text", hide=True) | |
go = builder.build() | |
data = AgGrid( | |
st.session_state.data_frame, | |
gridOptions=go, | |
update_mode=GridUpdateMode.SELECTION_CHANGED, | |
) | |
st.session_state.selected_rows = pd.DataFrame(data["selected_rows"]) | |
if len(st.session_state.selected_rows) > 0 or len(st.session_state.keyphrases) > 0: | |
rerender_output(col2) | |